• Title/Summary/Keyword: Threshold value

Search Result 1,704, Processing Time 0.036 seconds

Effect of Abrasive Particles on Frictional Force and Abrasion in Chemical Mechanical Polishing(CMP) (CMP 연마입자의 마찰력과 연마율에 관한 영향)

  • Kim, Goo-Youn;Kim, Hyoung-Jae;Park, Boum-Young;Lee, Hyun-Seop;Park, Ki-Hyun;Jeong, Hae-Do
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.10
    • /
    • pp.1049-1055
    • /
    • 2004
  • Chemical Mechanical Polishing (CMP) is referred to as a three body tribological system, because it includes two solids in relative motion and the CMP slurry. On the assumption that the abrasives between the pad and the wafer could be a major reason not only for the friction force but also for material removal during polishing, the friction force generated during CMP process was investigated with the change of abrasive size and concentration of CMP slurry. The threshold point of average coefficient of friction (COF) with increase in abrasives concentration during interlayer dielectric (ILD) CMP was found experimentally and verified mathematically based on contact mechanics. The predictable models, Mode I (wafer is in contact with abrasives and pad) and Mode II (wafer is in contact with abrasives only), were proposed and used to explain the threshold point. The average COF value increased in the low abrasives concentration region which might be explained by Mode I. In contrast the average COF value decreased at high abrasives concentration which might be regarded to as Mode II. The threshold point observed seemed to be due to the transition from Mode I to Mode II. The tendency of threshold point with the variation of abrasive size was studied. The increase of particle radius could cause contact status to reach transition area faster. The correlation between COF and material removal rate was also investigated from the tribological and energetic point of view. Due to the energy loss by vibration of polishing equipment, COF value is not proportional to the material removal rate in this experiment.

The Conversion method from ID-based Encryption to ID-based Dynamic Threshold Encryption (ID기반 암호시스템을 이용하여 ID기반 동적 임계 암호시스템으로 변환하는 방법)

  • Kim, Mi-Lyoung;Kim, Hyo-Seung;Son, Young-Dong;Lee, Dong-Hoon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.22 no.4
    • /
    • pp.733-744
    • /
    • 2012
  • Dynamic threshold public-key encryption provides dynamic setting of the group of all users, receivers and the threshold value. Over recent years, there are many studies on the construction of scheme, called ID-based dynamic threshold encryption, which combines the ID-based encryption with dynamic threshold encryption. In this paper, we analyze the ID-based dynamic threshold encryption proposed by Xing and Xu in 2011, and show that their scheme has a structural problem. We propose a conversion method from ID-based encryption which uses the bilinear map to ID-based dynamic threshold encryption. Additionally, we prove this converted scheme has CPA security under the full model.

Adaptive Shot Change Detection Technique Using Mean of Feature Value on Variable Reference Block (가변 참조 구간의 평균 특징값을 이용한 적응적인 장면 전환 검출 기법)

  • Kim, Won-Hee;Moon, Kwang-Seok;Kim, Jong-Nam
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.9 no.4
    • /
    • pp.272-279
    • /
    • 2008
  • Shot change detection is an important technique for effective management of video data, so detection scheme requires adaptive detection techniques to be used actually in various video. In this paper, we propose an adaptive shot change detection algorithm using the mean of feature value on variable reference blocks. Our algorithm determines shot change detection by defining adaptive threshold values with the feature value extracted from video frames and comparing the feature value and the threshold value. We obtained better detection ratio than the conventional methods maximally by 15% in the experiment with the same test sequence. We also had good detection ratio for other several methods of feature extraction and could see realtime operation of shot change detection in the hardware platform with low performance was possible by implementing it in TVUS model of HOMECAST company. Thus, our algerian in the paper can be useful in PMP(portable multimedia player) or other portable players.

  • PDF

Extreme value modeling of structural load effects with non-identical distribution using clustering

  • Zhou, Junyong;Ruan, Xin;Shi, Xuefei;Pan, Chudong
    • Structural Engineering and Mechanics
    • /
    • v.74 no.1
    • /
    • pp.55-67
    • /
    • 2020
  • The common practice to predict the characteristic structural load effects (LEs) in long reference periods is to employ the extreme value theory (EVT) for building limit distributions. However, most applications ignore that LEs are driven by multiple loading events and thus do not have the identical distribution, a prerequisite for EVT. In this study, we propose the composite extreme value modeling approach using clustering to (a) cluster initial blended samples into finite identical distributed subsamples using the finite mixture model, expectation-maximization algorithm, and the Akaike information criterion; (b) combine limit distributions of subsamples into a composite prediction equation using the generalized Pareto distribution based on a joint threshold. The proposed approach was validated both through numerical examples with known solutions and engineering applications of bridge traffic LEs on a long-span bridge. The results indicate that a joint threshold largely benefits the composite extreme value modeling, many appropriate tail approaching models can be used, and the equation form is simply the sum of the weighted models. In numerical examples, the proposed approach using clustering generated accurate extrema prediction of any reference period compared with the known solutions, whereas the common practice of employing EVT without clustering on the mixture data showed large deviations. Real-world bridge traffic LEs are driven by multi-events and present multipeak distributions, and the proposed approach is more capable of capturing the tendency of tailed LEs than the conventional approach. The proposed approach is expected to have wide applications to general problems such as samples that are driven by multiple events and that do not have the identical distribution.

Extraction of Threshold Voltage for Junctionless Double Gate MOSFET (무접합 이중 게이트 MOSFET에서 문턱전압 추출)

  • Jung, Hak Kee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.3
    • /
    • pp.146-151
    • /
    • 2018
  • In this study, we compared the threshold-voltage extraction methods of accumulation-type JLDG (junctionless double-gate) MOSFETs (metal-oxide semiconductor field-effect transistors). Threshold voltage is the most basic element of transistor design; therefore, accurate threshold-voltage extraction is the most important factor in integrated-circuit design. For this purpose, analytical potential distributions were obtained and diffusion-drift current equations for these potential distributions were used. There are the ${\phi}_{min}$ method, based on the physical concept; the linear extrapolation method; and the second and third derivative method from the $I_d-V_g$ relation. We observed that the threshold-voltages extracted using the maximum value of TD (third derivatives) and the ${\phi}_{min}$ method were the most reasonable in JLDG MOSFETs. In the case of 20 nm channel length or more, similar results were obtained for other methods, except for the linear extrapolation method. However, when the channel length is below 20 nm, only the ${\phi}_{min}$ method and the TD method reflected the short-channel effect.

Scaling theory to minimize the roll-off of threshold voltage for ultra fine MOSFET (미세 구조 MOSFET에서 문턱전압 변화를 최소화하기 위한 최적의 스켈링 이론)

  • 정학기;김재홍;고석웅
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.4
    • /
    • pp.719-724
    • /
    • 2003
  • In this paper, we have presented the simulation results about threshold voltage of nano scale lightly doped drain (LDD) MOSFET with halo doping profile. Device size is scaled down from 100nm to 40nm using generalized scaling. We have investigated the threshold voltage for constant field scaling and constant voltage scaling using the Van Dort Quantum Correction Model (QM) and direct tunneling current for each gate oxide thickness. We know that threshold voltage is decreasing in the constant field scaling and increasing in the constant voltage scaling when gate length is reducing, and direct tunneling current is increasing when gate oxide thickness is reducing. To minimize the roll off characteristics for threshold voltage of MOSFET with decreasing channel length, we know $\alpha$ value must be nearly 1 in the generalized scaling.

Dislocation/Particles Interaction and Threshold Stress in Precipitation-Hardened Al-0.55 wt% Zr Alloy with Fine Particles at High-Temperature (고온에서 미세입자를 가진 석출경화형 Al-0.55 wt% Zr 합금의 Threshold 응력과 전위/입자의 상호 작용에 관한 연구)

  • Kim, Byung I.;Nakashima, Hideharu
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.5 no.4
    • /
    • pp.201-208
    • /
    • 1992
  • An experimental study of the constitutive response of precipitation-strengthened Al-0.55wt% Zr alloy, which consists of an Al matrix precipitation-strengthened by coherent particles, ${\beta}^{\prime}(Al_3Zr)$ with $L1_2$ structure has been performed. The deformation response of the materials has been examined by stress relaxation test at 573K, 623K and 673K. It was found that there exist the threshold stress during stress relaxation and threshold stress results from the presense of ${\beta}^{\prime}(Al_3Zr)$ particles. The ratio of threshold stress and Orowan stress decreased gradually with increasing temperature. The resistance to climb-pass of particles was independent of particles size for a fixed volume fraction although the threshold for bowing and particles cutting are sensitive to the particles dimensions. The smaller particles cutted by dislocations. This behavior of dislocations in this alloy was explained in terms of the small value antiphase boundary energy. The dislocation networks wrere more extensive in spesimens subjected to stress relaxation and there were numerous areas that have a high denstiy of jogged dislocation. This experiment results indicate that the rate controlling stress relaxation process is the climb of edge dislocation over particles.

  • PDF

Electrical Conduction Property of the Carbon Black-Filled Polyethylene Matrix Composites Below the Percolation Threshold (문턱스며들기 이하 카본블랙 충진 폴리에칠렌기지 복합재료의 전기전도 특성)

  • Shin, Soon-Gi
    • Korean Journal of Materials Research
    • /
    • v.20 no.5
    • /
    • pp.271-277
    • /
    • 2010
  • In this paper two aspects of the percolation and conductivity of carbon black-filled polyethylene matrix composites will be discussed. Firstly, the percolation behavior, the critical exponent of conductivity of these composites, are discussed based on studying the whole change of resistivity, the relationship between frequency and relative permittivity or ac conductivity. There are two transitions of resistivity for carbon black filling. Below the first transition, resistivity shows an ohmic behavior and its value is almost the same as that of the matrix. Between the first and second transition, the change in resistivity is very sharp, and a non-ohmic electric field dependence of current has been observed. Secondly, the electrical conduction property of the carbon black-filled polyethylene matrix composites below the percolation threshold is discussed with the hopping conduction model. This study investigates the electrical conduction property of the composites below the percolation threshold based on the frequency dependence of conductivity in the range of 20 Hz to 1 MHz. There are two components for the observed ac loss current. One is independent of frequency that becomes prevalent in low frequencies just below the percolation threshold and under a high electrical field. The other is proportional to the frequency of the applied ac voltage in high frequencies and its origin is not clear. These results support the conclusion that the electrical conduction mechanism below the percolation threshold is tunneling.

Fatigue Crack Propagation Characteristics of Duplex-Stainless Steel Weldments (II) -Crack Propagation on Near-Threshold Region- (2상계 스테인리스강 용접부의 피로크랙 전파특성 (II) -하한계치 근접에서의 전파특성-)

  • 권종완;김상대;이택순
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.1
    • /
    • pp.115-124
    • /
    • 1989
  • Near-threshold fatigue crack-growth behavior at room temperature for a duplex stainless steel weldments was investigated to evaluate the effect of load ratio, microstructural change, and residual stresses. Near-threshold fatigue crack propagation behavior is found to show a marked sensitivity to .alpha./.gamma. phase ratio, and little residual stress effects. Threshold values in the heat affected zones are higher than those of base metals and threshold values for crack growth decrease with increasing the load ratio in the base metals and weldments. The fractrographic features in base metals, weldments and heat affectred zones were discussed in terms mechanism of crack growth.

Scaling theory to minimize the roll-off of threshold voltage for nano scale MOSFET (나노 구조 MOSFET의 문턱전압 변화를 최소화하기 위한 스케일링 이론)

  • 김영동;김재홍;정학기
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.11a
    • /
    • pp.494-497
    • /
    • 2002
  • In this paper, we have presented the simulation results about threshold voltage of nano scale lightly doped drain (LDD) MOSFET with halo doping profile. Device size is scaled down from 100nm to 40nm using generalized scaling. We have investigated the threshold voltage for constant field scaling and constant voltage scaling using the Van Dort Quantum Correction Model(QM) and direct tunneling current for each gate oxide thickness. We know that threshold voltage is decreasing in the constant field scaling and increasing in the constant voltage scaling when gate length is reducing, and direct tunneling current is increasing when gate oxide thickness is reducing. To minimize the roll-off characteristics for threshold voltage of MOSFET with decreasing channel length, we know u value must be nearly 1 in the generalized scaling.

  • PDF