Dislocation/Particles Interaction and Threshold Stress in Precipitation-Hardened Al-0.55 wt% Zr Alloy with Fine Particles at High-Temperature

고온에서 미세입자를 가진 석출경화형 Al-0.55 wt% Zr 합금의 Threshold 응력과 전위/입자의 상호 작용에 관한 연구

  • Kim, Byung I. (Department of Materials Science and Metallurgical Engineering, Sunchon National University) ;
  • Nakashima, Hideharu (Department of Materials Science and Technology. Graduate School of Engineering Science, Kyushu University)
  • Published : 1992.12.31

Abstract

An experimental study of the constitutive response of precipitation-strengthened Al-0.55wt% Zr alloy, which consists of an Al matrix precipitation-strengthened by coherent particles, ${\beta}^{\prime}(Al_3Zr)$ with $L1_2$ structure has been performed. The deformation response of the materials has been examined by stress relaxation test at 573K, 623K and 673K. It was found that there exist the threshold stress during stress relaxation and threshold stress results from the presense of ${\beta}^{\prime}(Al_3Zr)$ particles. The ratio of threshold stress and Orowan stress decreased gradually with increasing temperature. The resistance to climb-pass of particles was independent of particles size for a fixed volume fraction although the threshold for bowing and particles cutting are sensitive to the particles dimensions. The smaller particles cutted by dislocations. This behavior of dislocations in this alloy was explained in terms of the small value antiphase boundary energy. The dislocation networks wrere more extensive in spesimens subjected to stress relaxation and there were numerous areas that have a high denstiy of jogged dislocation. This experiment results indicate that the rate controlling stress relaxation process is the climb of edge dislocation over particles.

Keywords