• 제목/요약/키워드: Thorium

검색결과 131건 처리시간 0.027초

Economic analysis of thorium extraction from monazite

  • Salehuddin, Ahmad Hayaton Jamely Mohd;Ismail, Aznan Fazli;Bahri, Che Nor Aniza Che Zainul;Aziman, Eli Syafiqah
    • Nuclear Engineering and Technology
    • /
    • 제51권2호
    • /
    • pp.631-640
    • /
    • 2019
  • Thorium ($^{232}Th$) is four times more abundant than uranium in nature and has become a new important source of energy in the future. This is due to the ability of thorium to undergo the bombardment of neutron to produce uranium-233 ($^{233}U$). The aim of this study is to investigate the production cost of thorium oxide ($ThO_2$) resulted from the thorium extraction process. Four main parameters were studied which include raw material and chemical cost, total capital investment, direct cost and indirect cost. These parameters were justified to obtain the final production cost for the thorium extraction process. The result showed that the raw material costs were $63,126.00 - $104,120.77 (0.5 ton), $126,252.00 - $178,241.53 (1.0 ton), and $1,262,520.00 - $1,782,415.33 (10.0 tons). The total installed equipment and total cost investment were estimated to be approximately $11,542,984.10 and $13,274,431.715 respectively. Hence, the total costs for producing 1 kg $ThO_2$ were $6829.79 - $6911.78, $3540.95 - $3592.94, and $501.18 - $553.17 for 0.5, 1.0, and 10.0 tons respectively. The result concluded that with higher mass production, the cost of 1 kg $ThO_2$ would be reduced which in this scenario, the lowest production cost was $$501.18kg^{-1}$-$$553.17kg^{-1}$ for 10.0 tons of $ThO_2$ production.

Adsorptive Behavior of Catechol Violet and Its Thorium Complex on Mercury Electrode in Aqueous Media

  • Rabia Mostafa K. M.
    • 전기화학회지
    • /
    • 제7권1호
    • /
    • pp.9-15
    • /
    • 2004
  • Cyclic voltammetry and chronocoulometry have been used for characterization of catechol violet (CV) at the hanging mercury drop electrode in acetic acid-sodium acetate buffer solution. At pH 2.94 a nearly symmetric cyclic voltammetric wave due to an irreversible weak adsorption of CV on mercury was obtained at concentration of $0.53{\mu}mol\;dm ^{-3}$. Under these conditions, CV adsorbes in a monolayer. Upon increasing the concentration, the symmetry of the wave decreases; it can be attributed to a mixed diffusion adsorption process. The amount of the adsorbed catechol violet on the HMDE expressed as surface concentration as well as the surface areaf occupied by one molecule$(\sigma)$ were calculated. It was found that the values obtained for f and o utilizing cyclic voltammetric and chrono-coulometry are almost identical. A 1:1 and 1:2 Th (IV)-CV complexes are formed on addition of thorium (IV) to catechol violet. These complexes are adsorbed and reduced on the HMDE at more negative potentials than the peak potential of free CV, Using the square-wave (SW) technique, the adsorptive cathodic stripping voltammetry, ACSV, of these complexes was studied. It was found that the SW-ACSV of Th(IV)-CV can be applied to the determination of thorium at the nanomole level. Optimum conditions and the analytical method of determination were presented and discussed.

Effect of process parameters on the recovery of thorium tetrafluoride prepared by hydrofluorination of thorium oxide, and their optimization

  • Kumar, Raj;Gupta, Sonal;Wajhal, Sourabh;Satpati, S.K.;Sahu, M.L.
    • Nuclear Engineering and Technology
    • /
    • 제54권5호
    • /
    • pp.1560-1569
    • /
    • 2022
  • Liquid fueled molten salt reactors (MSRs) have seen renewed interest because of their inherent safety features, higher thermal efficiency and potential for efficient thorium utilisation for power generation. Thorium fluoride is one of the salts used in liquid fueled MSRs employing Th-U cycle. In the present study, ThF4 was prepared by hydro-fluorination of ThO2 using anhydrous HF gas. Process parameters viz. bed depth, hydrofluorination time and hydrofluorination temperature, were optimized for the preparation of ThF4 in a static bed reactor setup. The products were characterized with X-Ray diffraction and experimental conditions for complete conversion to ThF4 were established which also corroborated with the yield values. Hydrofluorination of ThO2 at 450 ℃ for half an hour at a bed depth of 6 mm gave the best result, with a yield of about 99.36% ThF4. No unconverted oxide or any other impurity was observed. Rietveld refinement was performed on the XRD data of this ThF4, and Chi2 value of 3.54 indicated good agreement between observed and calculated profiles.

COMPARISON BETWEEN EXPERIMENTALLY MEASURED AND THERMODYNAMICALLY CALCULATED SOLUBILITIES OF UO2 AND THO2 IN KURT GROUND WATER

  • Kim, Seung-Soo;Baik, Min-Hoon;Kang, Kwang-Cheol;Choi, Jong-Won
    • Nuclear Engineering and Technology
    • /
    • 제41권6호
    • /
    • pp.867-874
    • /
    • 2009
  • Solubility of a radionuclide is important for defining the release source term of a radioactive waste in the safety and performance assessments of a radioactive waste repository. When the pH and redox potential of the KURT groundwater were changed by an electrical method, the concentrations of uranium and thorium released from $UO_2$(cr) and $ThO_2$(cr) at alkali pH(8.1 ${\sim}$ 11.4) and reducing potential (Eh < -0.2 V) conditions were less than $10^{-7}mole/L$. Unexpectedly, the concentration of tetravalent thorium is slightly higher than that of uranium at pH = 8.1 and Eh= -0.2 V conditions, and this difference may be due to the formation of hydroxide-carbonate complex ions. When $UO_2$(s) and $UO_2$(am, hyd.), and $ThO_2$(s) and $Th(OH)_4(am)$ were assumed as solubility limiting solid phases, the concentrations of uranium and thorium in the KURT groundwater calculated by the PHREEQC code were comparable to the experimental results. The dominating aqueous species of uranium and thorium were presumed as $UO_2(CO_3)_3^{4-}$ and $Th(OH)_3CO_3^-$ at pH = 8.1 ${\sim}$ 9.8, and $UO_2(OH)_3^-$ and $Th(OH)_4(aq)$ at pH = 11.4.

Mechanical and thermodynamic stability, structural, electronics and magnetic properties of new ternary thorium-phosphide silicides ThSixP1-x: First-principles investigation and prospects for clean nuclear energy applications

  • Siddique, Muhammad;Iqbal, Azmat;Rahman, Amin Ur;Azam, Sikander;Zada, Zeshan;Talat, Nazia
    • Nuclear Engineering and Technology
    • /
    • 제53권2호
    • /
    • pp.592-602
    • /
    • 2021
  • Thorium compounds have attracted immense scientific and technological attention with regard to both fundamental and practical implications, owing to unique chemical and physical properties like high melting point, high density and thermal conductivity. Hereby, we investigate the mechanical and thermodynamic stability and report on the structural, electronic and magnetic properties of new silicon-doped cubic ternary thorium phosphides ThSixP1-x (x = 0, 0.25, 0.5, 0.75 and 1). The first-principles density functional theory procedure was adopted within full-potential linearized augmented plane wave (FP-LAPW) method. The exchange and correlation potential terms were treated within Generalized-Gradient-Approximation functional modified by Perdew-Burke-Ernzerrhof parameterizations. The proposed compounds showed mechanical and thermodynamic stable structure and hence can be synthesized experimentally. The calculated lattice parameters, bulk modulus, total energy, density of states, electronic band structure and spin magnetic moments of the compounds revealed considerable correlation to the Si substitution for P and the relative Si/P doping concentration. The electronic and magnetic properties of the doped compounds rendered them non-magnetic but metallic in nature. The main orbital contribution to the Fermi level arises from the hybridization of Th(6d+5f) and (Si+P)3p states. Reported results may have potential implications with regard to both fundamental point of view and technological prospects such as fuel materials for clean nuclear energy.

Economic evaluation of thorium oxide production from monazite using alkaline fusion method

  • Udayakumar, Sanjith;Baharun, Norlia;Rezan, Sheikh Abdul;Ismail, Aznan Fazli;Takip, Khaironie Mohamed
    • Nuclear Engineering and Technology
    • /
    • 제53권7호
    • /
    • pp.2418-2425
    • /
    • 2021
  • Monazite is a phosphate mineral that contains thorium (Th) and rare earth elements. The Th concentration in monazite can be as high as 500 ppm, and it has the potential to be used as fuel in the nuclear power system. Therefore, this study aimed to conduct the techno-economic analysis (TEA) of Th extraction in the form of thorium oxide (ThO2) from monazite. Th can be extracted from monazite through an alkaline fusion method. The TEA of ThO2 production studied parameters, including raw materials, equipment costs, total plant direct and indirect costs, and direct fixed capital cost. These parameters were calculated for the production of 0.5, 1, and 10 ton ThO2 per batch. The TEA study revealed that the highest production cost was ascribed to installed equipment. Furthermore, the highest return on investment (ROI) of 21.92% was achieved for extraction of 1 ton/batch of ThO2, with a payback time of 4.56 years. With further increase in ThO2 production to 10 ton/batch, the ROI was decreased to 5.37%. This is mainly due to a significant increase in the total capital investment with increasing ThO2 production scale. The minimum unit production cost was achieved for 1 ton ThO2/batch equal to 335.79 $/Kg ThO2.

ACTIVATION ANALYSIS OF ENVIRONMENTAL SAMPLES USING THE MT-25 MICROTRON OF THE FLNR

  • Maslov, O.D.;Belov, A.G.;Starodub, G.Ya.;Dmitriev, S.N.
    • 분석과학
    • /
    • 제8권4호
    • /
    • pp.815-820
    • /
    • 1995
  • Instrumental neutron and gamma activation analysis of coal and combustion products, determination of platinum content in natural samples by radiochemical gamma activation analysis and high-sensitive track method of thorium determination has been studied with the use of the MT-25 microtron.The optimal conditions for complete elemental analysis of coal and combustion products, isolation and determination of platinum and thorium are recommended.

  • PDF

Simultaneous Analysis of Uranium and Thorium by the Delayed Fission Neutron Counting Method

  • Lee, Chul;Kim, Huhn-Jun
    • Nuclear Engineering and Technology
    • /
    • 제6권2호
    • /
    • pp.80-88
    • /
    • 1974
  • Amiel의 지발중성자 계측법을 사용한 분석과정을 다소 수정하여 지질학적 시료중의 우라륨 및 토륨의 동시 정량을 시도하였다. 본 분석과정은 넓은 범위의 두원소의 함량비에서 정화하게 적용할 수 있었다. 개발과정중 수행한 세력사항을 기술하였으며 나아가 본 분석법을 평가하였던 바 우라늄의 감도는 0.1$\mu\textrm{g}$이하였고 토륨의 감도는 약 5$\mu\textrm{g}$이었다.

  • PDF

Monte Carlo analysis of LWR spent fuel transmutation in a fusion-fission hybrid reactor system

  • Sahin, Sumer;Sahin, Haci Mehmet;Tunc, Guven
    • Nuclear Engineering and Technology
    • /
    • 제50권8호
    • /
    • pp.1339-1348
    • /
    • 2018
  • The aim of this paper is to determine neutronic performances of the light water reactor (LWR) spent fuel mixed with fertile thorium fuel in a FFHR. Time dependent three dimensional calculations for major technical data, such as blanket energy multiplication, tritium breeding ratio, cumulative fissile fuel enrichment and burnup have been performed by using Monte Carlo Neutron-Particle Transport code MCNP5 1.4, coupled with a novel interface code MCNPAS, which is developed by our research group. A self-sustaining tritium breeding ratio (TBR>1.05) has been kept throughout the calculations. The study has shown that the fissile fuel quality will be improved in the course of the transmutation of the LWR spent in the FFHR. The latter has gained the reusable fuel enrichment level conventional LWRs between one and two years. Furthermore, LWR spent fuel - thorium mixture provides higher burn-up values than in light water reactors.

Computational study of protactinium incorporation effects in Th and Th compounds

  • Daroca, D. Perez;Llois, A.M.;Mosca, H.O.
    • Nuclear Engineering and Technology
    • /
    • 제52권10호
    • /
    • pp.2285-2289
    • /
    • 2020
  • Protactinium contamination is a mayor issue in the thorium fuel cycle. We investigate, in this work, the consequences of Pa incorporation in vacancy defects and interstitials in Th, ThC and ThN. We calculate charge transfers and lattice distortions due to these incorporations as well as migration paths and energies involved in the diffusion of Pa.