Browse > Article
http://dx.doi.org/10.1016/j.net.2021.01.028

Economic evaluation of thorium oxide production from monazite using alkaline fusion method  

Udayakumar, Sanjith (School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia)
Baharun, Norlia (School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia)
Rezan, Sheikh Abdul (School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia)
Ismail, Aznan Fazli (Nuclear Technology Research Centre, Faculty of Science and Technology, Universiti Kebangsaan Malaysia)
Takip, Khaironie Mohamed (Material Technology Group, Industrial Technology Division, Malaysian Nuclear Agency)
Publication Information
Nuclear Engineering and Technology / v.53, no.7, 2021 , pp. 2418-2425 More about this Journal
Abstract
Monazite is a phosphate mineral that contains thorium (Th) and rare earth elements. The Th concentration in monazite can be as high as 500 ppm, and it has the potential to be used as fuel in the nuclear power system. Therefore, this study aimed to conduct the techno-economic analysis (TEA) of Th extraction in the form of thorium oxide (ThO2) from monazite. Th can be extracted from monazite through an alkaline fusion method. The TEA of ThO2 production studied parameters, including raw materials, equipment costs, total plant direct and indirect costs, and direct fixed capital cost. These parameters were calculated for the production of 0.5, 1, and 10 ton ThO2 per batch. The TEA study revealed that the highest production cost was ascribed to installed equipment. Furthermore, the highest return on investment (ROI) of 21.92% was achieved for extraction of 1 ton/batch of ThO2, with a payback time of 4.56 years. With further increase in ThO2 production to 10 ton/batch, the ROI was decreased to 5.37%. This is mainly due to a significant increase in the total capital investment with increasing ThO2 production scale. The minimum unit production cost was achieved for 1 ton ThO2/batch equal to 335.79 $/Kg ThO2.
Keywords
Thorium; Thorium oxide; Monazite; Economic evaluation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. Qi, Hydrometallurgy of Rare Earths: Extraction and Separation, Elsevier, 2018.
2 F. Xie, T.A. Zhang, D. Dreisinger, F. Doyle, A critical review on solvent extraction of rare earths from aqueous solutions, Miner. Eng. 56 (2014) 10-28.   DOI
3 M.S. Peters, K.D. Timmerhaus, R.E. West, Plant Design and Economics for Chemical Engineers, fifth ed., McGraw-Hill, 2003.
4 C.K. Gupta, N. Krishnamurthy, Extractive Metallurgy of Rare Earths, CRC Press, New York, NY, 2005.
5 Z. Zhu, Y. Pranolo, C.Y. Cheng, Separation of uranium and thorium from rare earths for rare earth production-A review, Miner. Eng. 77 (2015) 185-196.   DOI
6 S. David, A. Billebaud, M.E. Brandan, R. Brissot, A. Giorni, D. Heuer, J.M. Loiseaux, O. Mfiplan, H. Nifenecker, J.B. Viano, J.P. Schapira, Fast subcritical hybrid reactors for energy production: evolution of physical parameters and induced radiotoxicities, Nucl. Instrum. Methods A. 443 (2000) 510-530.   DOI
7 E.C. Achilleos, J.C. Calandranis, D.P. Petrides, Quantifying the impact of uncertainty parameters in the batch manufacturing of active pharmaceutical ingredients, Pharmaceut. Eng. 26 (2006) 1-6.
8 E. Heinzle, A.P. Biwer, C.L. Cooney, Development of Sustainable Bioprocesses: Modelling and Assessment, Wiley, New Jersey, 2007.
9 Intelligen, SuperPro Designer User's Guide, Intelligen, Inc., Scotch Plains, USA, 2016.
10 G.D. Ulrich, P.T. Vasudevan, Chemical Engineering Process Design and Economics: a Practical Guide, Process Publishing, Durham, 2004.
11 A. Kumari, R. Panda, M.K. Jha, J.Y. Lee, J.R. Kumar, V. Kumar, Thermal treatment for the separation of phosphate and recovery of rare earth metals (REMs) from Korean monazite, J. Ind. Eng. Chem. 21 (2015) 696-703.   DOI
12 T. Amer, W. Abdella, G.A. Wahab, E. El-Sheikh, A suggested alternative procedure for processing of monazite mineral concentrate, Int. J. Miner. Process. 125 (2013) 106-111.   DOI
13 A. Nuttin, D. Heuer, A. Billebaud, R. Brissot, C. Le Brun, E. Liatard, et al., Potential of thorium molten salt reactors detailed calculations and concept evolution with a view to large scale energy production, Prog. Nucl. Energy 46 (2005) 77-99.   DOI
14 S.N. Gebremariam, J.M. Marchetti, Economics of biodiesel production: review, Energy Convers. Manag. 168 (2018) 74-84.   DOI
15 A.A. Galahom, Minimization of the fission product waste by using thorium based fuel instead of uranium dioxide, Nucl. Eng. Des. 314 (2017) 165-172.   DOI
16 T. Ault, S. Krahn, A. Croff, Thorium fuel cycle research and literature: trends and insights from eight decades of diverse projects and evolving priorities, Ann. Nucl. Energy 110 (2017) 726-738.   DOI
17 S.S. Drera, K.I. Bjork, J.F. Kelly, Thorium fuel production and results from beginning of life irradiation, Prog. Nucl. Energy 72 (2014) 5-10.   DOI
18 O. Ashraf, G.V.A. Rykhlevskii, G.V. Tikhomirov, K.D. Huff, Whole core analysis of the single-fluid double-zone thorium molten salt reactor (SD-TMSR), Ann. Nucl. Energy 137 (2020) 107115.   DOI
19 A. Rykhlevskii, J.W. Bae, K.D. Huff, Modeling and simulation of online reprocessing in the thorium-fueled molten salt breeder reactor, Ann. Nucl. Energy 128 (2019) 366-379.   DOI
20 S. Udayakumar, A. Fauzi, S. Abdul Rezan, T.A.R. Putra, C.G. Anderson, Chemical and mineralogical characterization of Malaysian monazite concentrate, Mining Metall. Explor. 37 (2020) 415-431.   DOI
21 P.R. Hania, F.C. Klaassen, Thorium oxide fuel, in: T.R. Allen, R.E. Stoller, S. Yamanaka (Eds.), Comprehensive Nuclear Materials, Elsevier Ltd., 2012, p. 588, 106.
22 M.K. Rowinski, T.J. White, J. Zhao, Small and medium sized reactors (SMR): a review of technology, Renew. Sustain. Energy Rev. 44 (2015) 643-656.   DOI
23 Y. Huang, T.A. Zhang, L. Jiang, D. Zhihe, T. Junhang, Decomposition of the mixed rare earth concentrate by microwave-assisted method, J. Rare Earths 34 (2016) 529-535.   DOI
24 O. Ashraf, G.V.A. Rykhlevskii, G.V. Tikhomirov, K.D. Huff, Strategies for thorium fuel cycle transition in the SD-TMSR, Ann. Nucl. Energy 148 (2020) 107656.   DOI
25 S. Peelman, Z.H. Sun, J. Sietsma, Y. Yang, Leaching of rare earth elements: review of past and present technologies, in: I.B. De Lima, W.L. Filho (Eds.), Rare Earths Industry, Elsevier, 2015, pp. 319-334.
26 F. Sadri, A.M. Nazari, A. Ghahreman, A review on the cracking, baking and leaching processes of rare earth element concentrates, J. Rare Earths 35 (2017) 739-752.   DOI
27 F. Sadri, F. Rashchi, A. Amini, Hydrometallurgical digestion and leaching of Iranian monazite concentrate containing rare earth elements Th, Ce, La and Nd, Int. J. Miner. Process. 159 (2017) 7-15.   DOI
28 C.J. Kim, H.S. Yoon, K.W. Chung, J.Y. Lee, S.D. Kim, S.M. Shin, S.J. Lee, A.R. Joe, S.I. Lee, S.J. Yoo, Leaching kinetics of lanthanum in sulfuric acid from rare earth element (REE) slag, Hydrometallurgy 146 (2014) 133-137.   DOI
29 K. Stone, A. Bandara, G. Senanayake, S. Jayasekera, Processing of rare earth phosphate concentrates: a comparative study of pre-leaching with perchloric, hydrochloric, nitric and phosphoric acids and deportment of minor/major elements, Hydrometallurgy 163 (2016) 137-147.   DOI
30 R.G. Harrison, P. Podd, A.R. Rudge, D.P. Petrides, Bioseparations Science and Engineering, Oxford University Press, 2003.
31 I. Pioro, R. Duffey, Current and future nuclear power reactors and plants, in: T.M. Letcher (Ed.), Managing Global Warming: an Interface of Technology and Human Issues, Academic Press, 2019, pp. 117-197.
32 U.E. Humphrey, M.U. Khandakera, Viability of thorium-based nuclear fuel cycle for the next generation nuclear reactor: issues and prospects, Renew. Sustain. Energy Rev. 97 (2018) 259-275.   DOI
33 C.N.A.C.Z. Bahri, A.F. Ismail, A. Ab Majid, M.I.F.M. Ruf, W.M. Al-Areqi, Extraction and purification of thorium oxide (ThO2) from monazite mineral, Sains Malays. 47 (2018) 1873-1882.   DOI
34 A.H.J.M. Salehuddin, A.F. Ismail, C.N.A.C.Z. Bahri, E.S. Aziman, Economic analysis of thorium extraction from monazite, Nucl. Eng. Technol. 51 (2019) 631-640.   DOI
35 A.H.J.M. Salehuddin, E.S. Aziman, C.N.A.C.Z. Bahri, M.A.R.A. Affendi, W.M.R. Idris, A.F. Ismail, Effectiveness study of thorium extraction from hydrochloric acid using di (2-ethylhexyl) phosphoric acid (D2-HPA), Sains Malays. 48 (2019) 419-424.   DOI
36 S. Udayakumar, S.A. Rezan, A.F. Noor, T.A. Putra, I. Ibrahim, N. Baharun, The dephosphorization behaviour of Malaysian Monazite concentrates, AIP Conf. Proc. 2267 (2020) 20070.
37 C.N.A.C.Z. Bahri, A.F. Ismail, A.A. Majid, Synthesis of thorium tetrafluoride (ThF4) by ammonium hydrogen difluoride (NH4HF2), Nucl. Eng. Technol. 51 (2019) 792-799.   DOI
38 A. Kumari, R. Panda, M.K. Jha, J.R. Kumar, J.Y. Lee, Process development to recover rare earth metals from monazite mineral: a review, Miner. Eng. 79 (2015) 102-115.   DOI
39 Q. Zheng, X. Bian, W.Y. Wu, An environmental friendly Coal-Ca(OH)2-NaOH roasting decomposition strategy for Bayan Obo tailings, Metall. Res. Technol. 114 (2017) 201.   DOI
40 W. Kim, I. Bae, S. Chae, H. Shin, Mechanochemical decomposition of monazite to assist the extraction of rare earth elements, J. Alloys Compd. 486 (2009) 610-614.   DOI
41 X. Yanhui, L. Haijiao, M. Zhijun, C. Jianguo, Z. Wenyi, L. Liangcai, Decomposition of bastnasite and monazite mixed rare earth minerals calcined by alkali liquid, J. Rare Earths 30 (2012) 155-158.   DOI
42 L. Berry, J. Galvin, V. Agarwal, M. Safarzadeh, Alkali pug bake process for the decomposition of monazite concentrates, Miner. Eng. 109 (2017) 32-41.   DOI
43 L. Wang, X. Huang, Y. Yu, L. Zhao, C. Wang, Z. Feng, D. Cui, Z. Long, Towards cleaner production of rare earth elements from bastnaesite in China, J. Clean. Prod. 165 (2017) 231-242.   DOI
44 F. Habashi, Extractive metallurgy of rare earths, Can. Metall. Q. 52 (2013) 224-233.   DOI
45 J. Galvin, M.S. Safarzadeh, Decomposition of msonazite concentrate in potassium hydroxide solution, J. Environ. Chem. Eng. 6 (2018) 1353-1363.   DOI