Browse > Article
http://dx.doi.org/10.1016/j.net.2020.07.019

Mechanical and thermodynamic stability, structural, electronics and magnetic properties of new ternary thorium-phosphide silicides ThSixP1-x: First-principles investigation and prospects for clean nuclear energy applications  

Siddique, Muhammad (Department of Physics, The University of Lahore, Raiwind Road Campus Lahore)
Iqbal, Azmat (Faculty of Engineering and Applied Sciences, Department of Physics, Riphah International University Islamabad)
Rahman, Amin Ur (Faculty of Engineering and Applied Sciences, Department of Physics, Riphah International University Islamabad)
Azam, Sikander (Faculty of Engineering and Applied Sciences, Department of Physics, Riphah International University Islamabad)
Zada, Zeshan (Materials Modelling Lab, Department of Physics, Islamia College University)
Talat, Nazia (Department of Computer Science Bahria University)
Publication Information
Nuclear Engineering and Technology / v.53, no.2, 2021 , pp. 592-602 More about this Journal
Abstract
Thorium compounds have attracted immense scientific and technological attention with regard to both fundamental and practical implications, owing to unique chemical and physical properties like high melting point, high density and thermal conductivity. Hereby, we investigate the mechanical and thermodynamic stability and report on the structural, electronic and magnetic properties of new silicon-doped cubic ternary thorium phosphides ThSixP1-x (x = 0, 0.25, 0.5, 0.75 and 1). The first-principles density functional theory procedure was adopted within full-potential linearized augmented plane wave (FP-LAPW) method. The exchange and correlation potential terms were treated within Generalized-Gradient-Approximation functional modified by Perdew-Burke-Ernzerrhof parameterizations. The proposed compounds showed mechanical and thermodynamic stable structure and hence can be synthesized experimentally. The calculated lattice parameters, bulk modulus, total energy, density of states, electronic band structure and spin magnetic moments of the compounds revealed considerable correlation to the Si substitution for P and the relative Si/P doping concentration. The electronic and magnetic properties of the doped compounds rendered them non-magnetic but metallic in nature. The main orbital contribution to the Fermi level arises from the hybridization of Th(6d+5f) and (Si+P)3p states. Reported results may have potential implications with regard to both fundamental point of view and technological prospects such as fuel materials for clean nuclear energy.
Keywords
Thorium phosphide-silicides; Thorium carbides; Nuclear fuel; Generalized-gradient-approximation; Spin magnetic moments; Density functional theory;
Citations & Related Records
연도 인용수 순위
  • Reference
1 P. Hohenberg, W. Kohn, Phys. Rev. B 136 (1964) 864.
2 J.P. Perdew, K. Bruke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865.   DOI
3 F.D. Murnaghan, Proc. Natl. Acad. Sci. U.S.A. 30 (1944) 244.   DOI
4 H. Kleykamp, Thorium carbides, in: gmelin handbook of inorganic and organometallic chemistry, in: eighth ed.Thorium Supplement, C6, Springer, Berlin, 1992, pp. 115-132.
5 L. Gerward, et al., J. Appl. Cryst. 18 (1985) 339.   DOI
6 Z. Zada, H. Ullah, R. Bibi, S. Zada, A. Mahmood, Electronic band profiles and magneto- electronic properties of ternary XCu2P2 (X = Ca, Sr) compounds: insight from ab initio calculations, Z. Naturforsch. 1 (2020).
7 F.A. Kassan-Ogly, A.V. Korolev, V.V. Ustinov, Yu N. Zuev, V.E. Arkhipov, Phys. Metals Metall. 114 (2013) 1155.   DOI
8 L. Gerward, J.S. Olsen, U. Benedict, J.P. Itie, J.C. Spirlet, J. Appl. Cryst. 19 (1986) 308.   DOI
9 A. Buschbeck, G.H. Chojnowski, J. Kotzler, R. Sonder, G. Thummes, Field-dependent phase transitions and magnetization of the type II- antiferromagnets TbP and TbSb, J. Magn. Magn Mater. 69 (1987) 171-182.   DOI
10 P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, WEIN2K, an augmented plane wave plus local orbitals program for calculating Crystal-Properties, in: K. Schwarz (Ed.), Properties, Techn, University Wein, Austria, 2001, 2001.
11 L. Petit, R. Tyer, Z. Szotek, W.M. Temmerman, A. Svane, Rare earth monopnictides and monochalcogenides from first principles: towards an electronic phase diagram of strongly correlated materials, New J. Phys. 12 (2010) 113041.   DOI
12 E. Zintl, C. Brauer, Z. Phys, Chem. Abt. B 20 (1933) 245-271.
13 S. Dabos-Seignon, U. Benedict, J.-C. Spirlet, M. Pag'es, J. Less Common Met. 153 (1989) 133-141.   DOI
14 B.S. Arya, M. Aynyas, S.P. Sanyal, J. Nucl. Mater. 393 (2009) 381-386.   DOI
15 B. Reihl, N. Martension, D.E. Eastman, O. Vogt, Phys. Rev. B 26 (1982) 1842.   DOI
16 G. Pagare, S.S. Chouhan, P. Soni, S.P. Sanyal, M. Rajagopalan, First principles study of structural, electronic and elastic properties of lutetium monopnictides, Comput. Mater. Comp. Maters. Sci. 50 (2010) 538-544.   DOI
17 L. Gerward, et al., High. Temp. - High. Press. 20 (1988) 545.
18 L. Gerward, J.S. Olsen, U. Benedict, S. Dabos, J.-P. Itie, O. Vogt, High. Temp. - High. Press. 20 (1988) 545-552.
19 J. Staun Olsen, L. Gerward, U. Benedict, H. Luo, O. Vogt, High. Temp. - High. Press. 20 (1988) 553-564.
20 L. Gerward, J.S. Olsen, U. Benedict, S. Dabos, O. Vogt, High Pres. Res. 1 (1989) 235-251.   DOI
21 J.S. Olsen, L. Gerward, U. Benedict, S. Dabos, J.-P. Itie, O. Vogt, High Pres. Res. 1 (1989) 253-261.   DOI
22 S. Dabos-Seignon, U. Benedict, S. Heathman, J.-C. Spirlet, M. Pag'es, J. Less Common Met. 160 (1990) 35-52.   DOI
23 M. Gensini, E. Gering, S. Heathman, U. Benedict, J.C. Spirlet, High Pres. Res. 2 (1990) 347-359.   DOI
24 P.K. Jha, S.P. Sanyal, Phys. Rev. B 46 (1992) 3664-3667.   DOI
25 V. Srivastava, S.P. Sanyal, J. Alloys Compd. 366 (2004) 15-20.   DOI
26 S. Kapoor, N. Yaduvanshi, S. Singh, Mol. Phys. 114 (2016) 3589, https://doi.org/10.1080/00268976.2016.1250964.   DOI
27 H.H. Hill, in: W.N. Miner (Ed.), Plutonium 1970 and Other Actinides, The metallurgical Society of the AIME, New York, 1970.
28 J. Schoenes, P. Repond, F. Hulliger, D.B. Ghosh, S.K. De, J. Kunes, P.M. Oppeneer, Phys. Rev. B 68 (2003), 085102.   DOI
29 S. Amari, S. Mecabih, B. Abbar, B. Bouhafs, J. Nucl. Mater. 454 (2014) 186-191.   DOI
30 M. Siddique, A.U. Rahman, A. Iqbal, B.U. Haq, S. Azam, A. Nadeem, A. Qayyum, Int. J. Thermophys. 40 (2019) 104, https://doi.org/10.1007/s107652572-7.   DOI
31 S. Yagoubi, et al., J. Alloys Compd. 546 (2013) 63-71.   DOI
32 B.D. Sahoo, K.D. Joshi, S.C. Gupta, Prediction of new high pressure structural sequence in thorium carbide: a first principles study, J. Appl. Phys. 117 (2015) 185903, https://doi.org/10.1063/1.4920929.   DOI
33 W. Khon, L.J. Sham, Phys. Rev. A 140 (1965) 1133.
34 C. Yu, J. Lin, P. Huai, et al., Structural phase transition of ThC under high pressure, Sci. Rep. 7 (2017) 96, https://doi.org/10.1038/s41598-017-00226-4.   DOI
35 D. Perez Daroca, A.M. Llois, H.O. Mosca, Computational study of protactinium incorporation effects in Th and Th compounds, Nucl. Eng. Technol. (2020), https://doi.org/10.1016/j.net.2020.03.017. In press.   DOI
36 U.E. Humphrey, M.U. Khandaker, Viability of thorium-based nuclear fuel cycle for the next generation nuclear reactor: issues and prospects, Renew. Sustain. Energy Rev. 97 (2018) 259.   DOI
37 E.L. Jacobson, R.D. Freeman, A.G. Tharp, A.W. Searcy, J. Am. Chem. Soc. 78 (1956) 4850.   DOI
38 J. Wang, Y. Zhou, Phys. Rev. B 69 (21) (2004) 214111.   DOI
39 V. Kanchana, G. Vaitheeswaran, A. Svane, S. Heathman, L. Gerward, J.S. Olsen, Acta Cryst. B 70 (2014) 459-468.   DOI
40 S. Dabos, C. Dufour, U. Benedict, J.-C. Spirlet, M. Pag'es, Phys. B 144 (1986) 79-83.   DOI
41 M. Anayas, P.K. Jha, S.P. Sanyal, Indian J. Pure Appl. Phys. 43 (2005) 109-114.
42 K. Kholiya, B.R.K. Gupta, Phys. B Condens. Matter 387 (2007) 271-275.   DOI
43 S. Kumar, S. Auluck, Bull. Mater. Sci. 26 (2003) 165-168.   DOI
44 Horst Wedemeyer, Kernforschungszentrum Karlsruhe, Compounds of thorium withSiliconin, in: Th Thorium Supplement Volume C 8, (Springer-Verlag Berlin Heidelberg 1993)
45 L. Petit, A. Svane, W.M. Temmerman, Z. Szotek, Eur. Phys. J. B 25 (2002) 139-146.   DOI
46 M. Siddique, A.U. Rahman, B.U. Haq, A. Iqbal, A. Ahmad, I. Ahmad, Comput. Condens. Matter. 13 (2017) 111.   DOI
47 Aicha Bahnes, et al., J. Supercond. Nov. Magnetism (2018), https://doi.org/10.1007/s10948-018-4760-2.   DOI
48 I.R. Shein, A.L. Ivanovskii, J. Struct. Chem. 49 (2008) 348-370.   DOI
49 M. Siddique, A.U. Rahman, A. Iqbal, S. Azam, Nucl. Eng. Technol. 51 (2019) 1373-1380.   DOI
50 S. Aydin, A. Tatar, Y.O. Ciftci, A theoretical study for thorium monocarbide (ThC), J. Nucl. Mater. ISSN: 00223115 429 (2012) 55-69, https://doi.org/10.1016/j.jnucmat.2012.05.038.   DOI
51 D. Perez Daroca, S. Jaroszewicz, A.M. Llois, H.O. Mosca, Phonon spectrum, mechanical and thermophysical properties of thorium carbide, J. Nucl. Mater. ISSN: 00223115 437 (2013) 135-138, https://doi.org/10.1016/j.jnucmat.2013.01.350.   DOI
52 Tashiema L. Wilson, et al., Adv. Appl. Ceram. 117 (2018) s76-s81, https://doi.org/10.1080/17436753.2018.1521607.   DOI
53 I.R. Shein, et al., J. Nucl. Mater. 353 (2006) 19-26.   DOI
54 R. Benz, A. Naoumidis, Thorium, compounds with nitrogen, gmelin handbook of inorganic chemistry, in: eighth ed.Thorium Supplement, C3, Springer, Berlin, 1987.
55 J.S. Olsen, L. Gerward, U. Benedict, H. Luo, O. Vogt, Crystal structure and the equation of state of thorium monophosphide for pressures up to 50 GPa, J. Appl. Cryst. 22 (1989) 61-63.   DOI
56 H. Venu, Mankad, P.K. Jha, Thermodynamic properties of nuclear material uranium carbide using density functional theory, J. Therm. Anal. Calorim. 124 (2016) 11-20.   DOI
57 Y. Guo, W. Qiu, X. Ke, et al., A new phase of ThC at high pressure predicted from a first principles study, Phys. Lett. A 379 (2015) 1607-1611, https://doi.org/10.1016/j.physleta.2015.03.037.   DOI
58 J.T. White, A.W. Travis, J.T. Dunwoody, et al., Fabrication and thermophysical property characterization of UN/U3Si2 composite fuel forms, J. Nucl. Mater. 495 (2017) 463-474.   DOI
59 K.A. Terrani, D. Wang, L.J. Ott, et al., The effect of fuel thermal conductivity on the behavior of LWR cores during loss-of-coolant accident, J. Nucl. Mater. 448 (2014) 512-519.   DOI
60 I.R. Shein, K.I. Snein, N.I. Medvedeva, A.L. Ivanovskii, Phys. Status Solidi 244 (2007) 3198.   DOI