Browse > Article
http://dx.doi.org/10.1016/j.net.2020.03.017

Computational study of protactinium incorporation effects in Th and Th compounds  

Daroca, D. Perez (Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica)
Llois, A.M. (Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica)
Mosca, H.O. (Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica)
Publication Information
Nuclear Engineering and Technology / v.52, no.10, 2020 , pp. 2285-2289 More about this Journal
Abstract
Protactinium contamination is a mayor issue in the thorium fuel cycle. We investigate, in this work, the consequences of Pa incorporation in vacancy defects and interstitials in Th, ThC and ThN. We calculate charge transfers and lattice distortions due to these incorporations as well as migration paths and energies involved in the diffusion of Pa.
Keywords
Thorium; Th compounds; Protactinium; Incorporation energies; Migration energies; First-principle calculations;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 J. Bouchet, F. Jollet, G. Zerah, High-pressure lattice dynamics and thermodynamic properties of Th: an ab initio study of phonon dispersion curves, Phys. Rev. B 74 (2006) 134304.   DOI
2 Y. Lu, D. Li, B. Wang, R. Li, P. Zhang, Electronic structures, mechanical and thermodynamic properties of ThN from first-principles calculations, J. Nucl. Mater. 408 (2011) 136.   DOI
3 P. Modak, A.K. Verma, First-principles investigation of electronic, vibrational, elastic, and structural properties of ThN and UN up to 100 GPa, Phys. Rev. B 84 (2011), 024108.   DOI
4 R. Atta-Fynn, A.K. Ray, Density functional study of the actinide nitrides, Phys. Rev. B 76 (2007) 115101.   DOI
5 D. Perez Daroca, A.M. Llois, H.O. Mosca, Point defects in thorium nitride: a first-principles study, J. Nucl. Mater. 480 (2016) 1.   DOI
6 S. Aydin, A. Tatar, Y.O. Ciftci, A theoretical study for thorium monocarbide (ThC), J. Nucl. Mater. 429 (2012) 55.   DOI
7 I.S. Lim, G.E. Scuseria, The screened hybrid density functional study of metallic thorium carbide, Chem. Phys. Lett. 460 (2008) 137.   DOI
8 I.R. Shein, K.I. Shein, A.L. Ivanovskii, First-principle study of B1-like thorium carbide, nitride and oxide, J. Nucl. Mater. 353 (2006) 19.   DOI
9 I.R. Shein, K.I. Shein, A.L. Ivanovskii, Elastic properties of thorium ceramics ThX (X = C, N, O, P, As, Sb, S, Se), Tech. Phys. Lett. 33 (2007) 128.   DOI
10 D. Perez Daroca, S. Jaroszewicz, A.M. Llois, H.O. Mosca, Phonon spectrum, mechanical and thermophysical properties of thorium carbide, J. Nucl. Mater. 437 (2013) 135.   DOI
11 J.D. Greiner, D.T. Peterson, J.F. Smith, Comparison of the singlecrystal elastic constants of Th and a ThC0.063 alloy, J. Appl. Phys. 48 (1977) 3357.   DOI
12 D. Perez Daroca, S. Jaroszewicz, A.M. Llois, H.O. Mosca, First-principles study of point defects in thorium carbide, J. Nucl. Mater. 454 (2014) 217.   DOI
13 D. Perez Daroca, A.M. Llois, H.O. Mosca, A first-principles study of He, Xe, Kr and O incorporation in thorium carbide, J. Nucl. Mater. 460 (2015) 216.   DOI
14 D. Perez Daroca, A.M. Llois, H.O. Mosca, Diffusion in thorium carbide: a firstprinciples study, J. Nucl. Mater. 467 (2015) 572.   DOI
15 http://theory.cm.utexas.edu/henkelman/code/bader/.
16 H. Kleykamp, Thorium Carbides, Gmelin Handbook of Inorganic and Organometallic Chemestry, Eighth Ed. Thorium Supplement, C6, Springer, Berlin, 1992.
17 L. Gerward, J. Staun Olsen, U. benedict, J.-P. Itie, J.C. Spirlet, The crystal structure and the equation of state of thorium nitride for pressures up to 47 GPa, J. Appl. Crystallogr. 18 (1985) 339.   DOI
18 M. Freyss, First-principles study of uranium carbide: accommodation of point defects and of helium, xenon, and oxygen impurities, Phys. Rev. B 81 (2010), 014101.   DOI
19 Greg Mills, Hannes Jonsson, Quantum and thermal effects in H2 dissociative adsorption: evaluation of free energy barriers in multidimensional quantum systems, Phys. Rev. Lett. 72 (1994) 1124.   DOI
20 P. Giannozzi, et al., Quantum ESPRESSO: a modular and open-source software project for quantum simulations of materials, J. Phys. Condens. Matter 21 (2009) 395502.   DOI
21 N.pbe-kjpawUPF. http://www.quantum-espresso.org.
22 J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996) 3865.   DOI
23 N. Troullier, J.L. Martins, Efficient pseudopotentials for plane-wave calculations, Phys. Rev. B 43 (1991) 1993.   DOI
24 C.pberrjkusUPF. http://www.quantum-espresso.org.
25 H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13 (1976) 5188.   DOI
26 M. Methfessel, A.T. Paxton, High-precision sampling for Brillouin-zone integration in metals, Phys. Rev. B 40 (1989) 3616.   DOI
27 D. Perez Daroca, Ab initio modeling of point defects, self-diffusion, and incorporation of impurities in thorium, Solid State Commun. 252 (2017) 11.   DOI
28 T. Abram, S. Ion, Generation-IV nuclear power: a review of the state of the science, Energy Pol. 36 (2008) 4323.   DOI
29 H. Wang, et al., Electronic structure, elastic and thermal transport properties of thorium monocarbide based on first-principles study, J. Nucl. Mater. 524 (2019) 141.   DOI
30 H. Gy€orgy, Sz Czifrus, The utilization of thorium in Generation IV reactors, Prog. Nucl. Energy 93 (2016) 306.   DOI
31 Y. Yan, et al., Mechanical stability and superconductivity of PbO-type phase of thorium monocarbide at high pressure, Comput. Mater. Sci. 136 (2017) 238.   DOI
32 C. Yu, et al., Structural phase transition of ThC under high pressure, Sci. Rep. 7 (2017) 96.   DOI
33 D. Perez Daroca, A.M. Llois, H.O. Mosca, Modeling of oxygen incorporation in Th, ThC, and ThN by density functional theory calculations, J. Nucl. Mater. 496 (2017) 124.   DOI
34 M. Siddique, A.U. Rahman, A. Iqbal, S. Azam, A first-principles theoretical investigation of the structural, electronic and magnetic properties of cubic thorium carbonitrides ThCxN(1-x), Nucl. Eng. Technol. 51 (2019) 1373.   DOI
35 M. Petit, et al., Determination of the 233Pa(n, f) reaction cross section from 0.5 to 10 MeV neutron energy using the transfer reaction 232Th(3He, p)234Pa, Nucl. Phys. 735 (2004) 345.   DOI
36 F. Yang, J. Du, G. Jiang, Th doped carbon clusters ThCn (n=17): stability and bonding natures, Comput. Theor. Chem. 1159 (2019) 7.   DOI
37 B.D. Sahoo, K.D. Joshi, T.C. Kaushik, High pressure structural stability of ThN: ab-initio study, J. Nucl. Mater. 521 (2019) 161.   DOI
38 Y.L. Li, J. Cai, D. Mo, Y.D. Wang, First principle study on the predicted phase transition of MN (M=Zr, La and Th), J. Phys. Condens. Matter 31 (2019) 335402.   DOI
39 U.E. Humphrey, M.U. Khandaker, Viability of thorium-based nuclear fuel cycle for the next generation nuclear reactor: issues and prospects, Renew. Sustain. Energy Rev. 97 (2018) 259.   DOI
40 P. Rodriguez, C.v. Sundaram, Nuclear and materials aspects of the thorium fuel cycle, J. Nucl. Mater. 100 (1981) 227.   DOI
41 G. Vladuca, et al., Calculation of the neutron-induced fission cross section of 233Pa, Phys. Rev. C 69 (2004), 021604(R).
42 R. Lorenz, H.L. Scherff, N. Toussaint, G. Vos, Preparation of Th-Pa alloys and determination of the solubility of Pa in Th, J. Nucl. Mater. 37 (1970) 203.   DOI
43 F. Schmitz, M. Fock, Diffusion of thorium, protactinium and uranium in facecentred cubic thorium, J. Nucl. Mater. 21 (1967) 317.   DOI
44 N. Richard, S. Bernard, F. Jollet, M. Torrent, Plane-wave pseudopotential study of the light actinides, Phys. Rev. B 66 (2002) 235112.   DOI