Browse > Article
http://dx.doi.org/10.1016/j.net.2018.08.006

Monte Carlo analysis of LWR spent fuel transmutation in a fusion-fission hybrid reactor system  

Sahin, Sumer (Bahcesehir University, Faculty of Engineering and Natural Sciences, Department of Energy Systems Engineering)
Sahin, Haci Mehmet (Bahcesehir University, Faculty of Engineering and Natural Sciences, Department of Energy Systems Engineering)
Tunc, Guven (Erciyes University, Faculty of Aeronautics and Astronautics, Department of Aeronautical Engineering)
Publication Information
Nuclear Engineering and Technology / v.50, no.8, 2018 , pp. 1339-1348 More about this Journal
Abstract
The aim of this paper is to determine neutronic performances of the light water reactor (LWR) spent fuel mixed with fertile thorium fuel in a FFHR. Time dependent three dimensional calculations for major technical data, such as blanket energy multiplication, tritium breeding ratio, cumulative fissile fuel enrichment and burnup have been performed by using Monte Carlo Neutron-Particle Transport code MCNP5 1.4, coupled with a novel interface code MCNPAS, which is developed by our research group. A self-sustaining tritium breeding ratio (TBR>1.05) has been kept throughout the calculations. The study has shown that the fissile fuel quality will be improved in the course of the transmutation of the LWR spent in the FFHR. The latter has gained the reusable fuel enrichment level conventional LWRs between one and two years. Furthermore, LWR spent fuel - thorium mixture provides higher burn-up values than in light water reactors.
Keywords
LWR spent fuel; Thorium; Time dependent neutronic analysis; Fusion-fission hybrid reactor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. Zheng, T. Zu, H. Wu, L. Cao, C. Yang, "The neutronics studies of a fusion fission hybrid reactor using pressure tube blankets, Fusion Eng. Des. 87 (9) (2012) 1589-1596.   DOI
2 T. Zu, H. Wu, Y. Zheng, L. Cao, C. Yang, "NAPTH: neutronics analysis code system for the fusionefission hybrid reactor with pressure tube type blanket, Fusion Eng. Des. 88 (3) (2013) 170-176.   DOI
3 R. Holly, I. David, H.R. Trellue, User's Manual, Version 2.0 for MONTEBURNS, Version 5B, Los Alamos National Laboratory, 1999.
4 M.T. Siddique, M.H. Kim, << Conceptual design study of Hyb-WT as fusionefission hybrid reactor for waste transmutation, Ann. Nucl. Energy 65 (2014) 299-306.   DOI
5 S.C. Xiao, J. Zhao, Z. Zhou, Y. Yang, "Neutronic study of a molten salt cooled natural thoriumeuranium fuelled fusionefission hybrid energy system, J. Fusion Energy 34 (2) (2015) 352-360.   DOI
6 F. Carminati, C. Roche, J.A. Rubio, C. Rubbia, J.P.C. Revol, R. Klapisch, An Energy Amplifier for Cleaner and Inexhaustible Nuclear Energy Production Driven by a Particle Beam Accelerator, 1993 (No. CERN-AT-93-47-ET). P00019698.
7 C. Rubbia, J.A. Rubio, S. Buono, F. Carminati, N. Fietier, J. Galvez, C. Geles, Y. Kadi, R. Klapisch, P. Mandrillon, J.P. Revol, Ch Roche, Conceptual Design of a Fast Neutron Operated High Power Energy Amplifier, 1995 (No. CERN-AT-95-44-ET).
8 C. Rubbia, S. Buono, Y. Kadi, J.A. Rubio, Fast Neutron Incineration in the Energy Amplifier as Alternative to Geologic Storage: the Case of Spain (No. CERN-lhc-97-001-eet), 1997.
9 H.A. Abderrahim, P. Baeten, D. De Bruyn, R. Fernandez, "MYRRHAeA multipurpose fast spectrum research reactor, Energy Convers. Manag. 63 (2012) 4-10.   DOI
10 R. Barlow, J. Burlison, T. Edwards, A. Healy, A. Masterson, H.A. Abderrahim, G. Van den Eynde, Studies of MYRRHA using thorium fuel, Int. J. Hydrogen Energy 41 (17) (2016) 7175-7180.   DOI
11 A. Stankovskiy, H. Iwamoto, Y. Celik, G. Van den Eynde, High-energy nuclear data uncertainties propagated to MYRRHA safety parameters, Ann. Nucl. Energy 120 (2018) 207-218.   DOI
12 X-5 Monte Carlo Team, MCNP5 - a General Monte Carlo, N-particle Transport Code, Version 5, LA-CP-03-0245, Los Alamos National Laboratory, 2005.
13 Y. Wu, Z. Chen, L. Hu, et al., Identification of safety gaps for fusion demonstration reactors, Nature Energy 1 (2016) 16154.   DOI
14 Y. Wu, Y. Bai, Y. Song, et al., Development strategy and conceptual design of China lead-based research reactor, Ann. Nucl. Energy 87 (2016) 511-516.   DOI
15 W.E. Shoupp, J.E. Hill, Thresholds for fast neutron fission in thorium and uranium, Phys. Rev. 75 (1949) 785.   DOI
16 S.B. Degweker, P.V. Bhagwat, S. Krishnagopal, A. Sinha, "Physics and technology for development of accelerator driven systems in India, Prog. Nucl. Energy 101 (2017) 53-81.   DOI
17 Y. Wu, Design and R&D progress of China lead-based reactor for ADS research facility, Engineering 2 (1) (2016) 124-131.   DOI
18 Y. Wu, Development of high intensity DeT fusion neutron generator HINEG,, International Journal of Energy Research 42 (1) (2018) 68-72.   DOI
19 G. Tunc, The Neutronic Analysis of the Performances of Thorium and Various Nuclear Fuels in a Fusion-fission Reactor System (PhD thesis in Turkish), Gazi University, Ankara, Turkey, 2017.
20 C.V. Parks, SCALE-4.3: Modular Code System for Performing Standardized Computer Analysis for Licensing Evaluation for Workstations and Personal Computers, 1995. CCC-545.
21 S. Sahin, H. Yapici, S. Unalan, ERDEML_I, a Computer Program to Process ANISN Output Data, Gazi University, Faculty of Technology, Ankara, Turkey, 1991.
22 J.P. Freidberg, A.C. Kadak, Fusion fission hybrids revisited, Nat. Phys. 5 (2009) 370-372. http://web.mit.edu/fusion-fission/HybridsPubli/nphys1288.pdf.   DOI
23 W.W. Engle Jr., ANISN, a One-dimensional Discrete Ordinates Transport Code with Anisotropic Scattering, 1970. ORNL-K-1693.
24 L.M. Petrie, SCALE5-SCALE system driver, NUREG/CR-0200, revision 7, volume III, section M1, ORNL/NUREG/CSD-2/V3/r7, Oak ridge national laboratory and SCALE 6.2.2, a comprehensive modeling and simulation suite for nuclear safety analysis and design, SCALE website. http://scale.ornl.gov, 2004.
25 S. Sahin, H. Yapici, Investigation of the neutronic potential of moderated and fast (D, T) hybrid blankets for rejuvenation of CANDU spent fuel, Fusion Sci. Technol. 16 (3) (1989) 331-345.   DOI
26 S. Sahin, H.M. Sahin, A. Sozen, M. Bayrak, Power flattening and minor actinide burning in a thorium fusion breeder, Energy Convers. Manag. 43 (6) (2002) 799-815.   DOI
27 S. Sahin, H. Yapici, Rejuvenation of light water reactor spent fuel in fusion blankets, Ann. Nucl. Energy 25 (16) (1998) 1317-1339.   DOI
28 S. Sahin, H. Yapici, Neutronic analysis of a thorium fusion breeder with enhanced protection against nuclear weapon proliferation, Ann. Nucl. Energy 26 (1) (1999) 13-27.   DOI
29 S. Sahin, H. Yapici, M. Bayrak, Spent mixed oxide fuel rejuvenation in fusion breeders, Fusion Eng. Des. 47 (1) (1999) 9-23.   DOI
30 S. Sahin, H.M. Sahin, K. Yildiz, Investigation of the effects of the resonance absorption in a fusion breeder blanket, Ann. Nucl. Energy 29 (14) (2002) 1641-1660.   DOI
31 S. Sahin, H.M. Sahin, A. Acir, Criticality and burn up evolutions of the fixed bed nuclear reactor with alternative fuels, Energy Convers. Manag. 51 (9) (2010) 1781-1787.   DOI
32 H. Yapici, G. Genc, N. Demir, Numerical study on effects of fuel mixture fraction and Li-6 enrichment on neutronic parameters of a fusionefission hybrid reactor, J. Fusion Energy 23 (3) (2004) 191-205.   DOI
33 S. Yalcin, M. Ubeyli, A. Acir, Neutronic analysis of a high power density hybrid reactor using innovative coolants, Sadhana 30 (4) (2005) 585-600.   DOI
34 A. Acir, M. Ubeyli, Burning of reactor grade plutonium mixed with thorium in a hybrid reactor, J. Fusion Energy 26 (3) (2007) 293-298.   DOI
35 S. Sahin, H.M. Sahin, A. Acir, Utilization of TRISO fuel with reactor grade plutonium in CANDU reactors, Nucl. Eng. Des. 240 (8) (2010) 2066-2074.   DOI
36 S. Sahin, H.M. Sahin, A. Acir, LIFE hybrid reactor as reactor grade plutonium burner, Energy Convers. Manag. 63 (2012) 44-50.   DOI
37 S. Sahin, H.M. Sahin, M. Alkan, K. Yildiz, An assessment of thorium and spent LWR-fuel utilization potential in CANDU reactors, Energy Convers. Manag. 45 (7-8) (2004) 1067-1085.   DOI
38 S. Sahin, H.M. Sahin, A. Acir, T.A. Al-Kusayer, "Criticality investigations for the fixed bed nuclear reactor using thorium fuel mixed with plutonium or minor actinides, Ann. Nucl. Energy 36 (8) (2009) 1032-1038.   DOI
39 S. Sahin, K. Yildiz, H.M. Sahin, N. Sahin, A. Acir, Increased fuel burn up in a CANDU thorium reactor using weapon grade plutonium, Nucl. Eng. Des. 236 (17) (2006) 1778-1788.   DOI
40 M. Ubeyli, Neutronic performance of new coolants in a fusionefission (hybrid) reactor, Fusion Eng. Des. 70 (4) (2004) 319-328.   DOI
41 H.M. Sahin, G. Tunc, N. Sahin, Investigation of tritium breeding ratio using different coolant material in a fusionefission hybrid reactor, Int. J. Hydrogen Energy 41 (17) (2016) 7069-7075.   DOI
42 S. Sahin, K. Yildiz, H.M. Sahin, A. Acir, Investigation of CANDU reactors as a thorium burner, Energy Convers. Manag. 47 (13-14) (2006) 1661-1675.   DOI
43 H.M. Sahin, Monte Carlo calculation of radiation damage in first wall of an experimental hybrid reactor, Ann. Nucl. Energy 34 (11) (2007) 861-870.   DOI
44 H.M. Sahin, A. Acir, T. Altinok, S. Yalcin, Monte Carlo calculation for various enrichment lithium coolant using different data libraries in a hybrid reactor, Energy Convers. Manag. 49 (7) (2008) 1960-1965.   DOI
45 M. Kotschenreuther, P.M. Valanju, S.M. Mahajan, E.A. Schneider, Fusionefission transmutation schemedefficient destruction of nuclear waste, Fusion Eng. Des. 84 (1) (2009) 83-88.   DOI
46 M. Matsunaka, M. Ohta, K. Kondo, H. Miyamaru, I. Murata, Speed-up of crosssection collapsing with weight-window for subcritical burnup calculation, Fusion Eng. Des. 84 (7) (2009) 1281-1284.   DOI
47 M. Matsunaka, M. Ohta, H. Miyamaru, I. Murata, Advanced burnup calculation code system in a subcritical state with continuous-energy Monte Carlo code for fusion-fission hybrid reactor, J. Nucl. Sci. Technol. 46 (8) (2009) 776-786.   DOI
48 X.B. Ma, Y.X. Chen, Y. Wang, P.Z. Zhang, B. Cao, D.G. Lu, H.P. Cheng, "Neutronic calculations of a thorium-based fusionefission hybrid reactor blanket, Fusion Eng. Des. 85 (10) (2010) 2227-2231.   DOI
49 Z. Zhou, Y. Yang, H. Xu, <   DOI
50 J.R. Lamarsh, A.J. Baratta, Introduction to Nuclear Engineering, third ed., Pearson, 2001.
51 S. Sahin, J. Ligou, The effect of the spontaneous fission of 240Pu on the energy release in a nuclear explosive, Nucl. Technol. 50 (1980) 88-94.   DOI