References
- T. Abram, S. Ion, Generation-IV nuclear power: a review of the state of the science, Energy Pol. 36 (2008) 4323. https://doi.org/10.1016/j.enpol.2008.09.059
- H. Wang, et al., Electronic structure, elastic and thermal transport properties of thorium monocarbide based on first-principles study, J. Nucl. Mater. 524 (2019) 141. https://doi.org/10.1016/j.jnucmat.2019.06.032
- H. Gy€orgy, Sz Czifrus, The utilization of thorium in Generation IV reactors, Prog. Nucl. Energy 93 (2016) 306. https://doi.org/10.1016/j.pnucene.2016.09.007
- D. Perez Daroca, Ab initio modeling of point defects, self-diffusion, and incorporation of impurities in thorium, Solid State Commun. 252 (2017) 11. https://doi.org/10.1016/j.ssc.2017.01.002
- Y. Yan, et al., Mechanical stability and superconductivity of PbO-type phase of thorium monocarbide at high pressure, Comput. Mater. Sci. 136 (2017) 238. https://doi.org/10.1016/j.commatsci.2017.05.008
- C. Yu, et al., Structural phase transition of ThC under high pressure, Sci. Rep. 7 (2017) 96. https://doi.org/10.1038/s41598-017-00226-4
- D. Perez Daroca, A.M. Llois, H.O. Mosca, Modeling of oxygen incorporation in Th, ThC, and ThN by density functional theory calculations, J. Nucl. Mater. 496 (2017) 124. https://doi.org/10.1016/j.jnucmat.2017.09.023
- M. Siddique, A.U. Rahman, A. Iqbal, S. Azam, A first-principles theoretical investigation of the structural, electronic and magnetic properties of cubic thorium carbonitrides ThCxN(1-x), Nucl. Eng. Technol. 51 (2019) 1373. https://doi.org/10.1016/j.net.2019.03.003
- F. Yang, J. Du, G. Jiang, Th doped carbon clusters ThCn (n=17): stability and bonding natures, Comput. Theor. Chem. 1159 (2019) 7. https://doi.org/10.1016/j.comptc.2019.05.003
- B.D. Sahoo, K.D. Joshi, T.C. Kaushik, High pressure structural stability of ThN: ab-initio study, J. Nucl. Mater. 521 (2019) 161. https://doi.org/10.1016/j.jnucmat.2019.04.038
- Y.L. Li, J. Cai, D. Mo, Y.D. Wang, First principle study on the predicted phase transition of MN (M=Zr, La and Th), J. Phys. Condens. Matter 31 (2019) 335402. https://doi.org/10.1088/1361-648X/ab1f9a
- U.E. Humphrey, M.U. Khandaker, Viability of thorium-based nuclear fuel cycle for the next generation nuclear reactor: issues and prospects, Renew. Sustain. Energy Rev. 97 (2018) 259. https://doi.org/10.1016/j.rser.2018.08.019
- P. Rodriguez, C.v. Sundaram, Nuclear and materials aspects of the thorium fuel cycle, J. Nucl. Mater. 100 (1981) 227. https://doi.org/10.1016/0022-3115(81)90534-1
- M. Petit, et al., Determination of the 233Pa(n, f) reaction cross section from 0.5 to 10 MeV neutron energy using the transfer reaction 232Th(3He, p)234Pa, Nucl. Phys. 735 (2004) 345. https://doi.org/10.1016/j.nuclphysa.2004.02.017
- G. Vladuca, et al., Calculation of the neutron-induced fission cross section of 233Pa, Phys. Rev. C 69 (2004), 021604(R).
- R. Lorenz, H.L. Scherff, N. Toussaint, G. Vos, Preparation of Th-Pa alloys and determination of the solubility of Pa in Th, J. Nucl. Mater. 37 (1970) 203. https://doi.org/10.1016/0022-3115(70)90085-1
- F. Schmitz, M. Fock, Diffusion of thorium, protactinium and uranium in facecentred cubic thorium, J. Nucl. Mater. 21 (1967) 317. https://doi.org/10.1016/0022-3115(67)90183-3
- N. Richard, S. Bernard, F. Jollet, M. Torrent, Plane-wave pseudopotential study of the light actinides, Phys. Rev. B 66 (2002) 235112. https://doi.org/10.1103/PhysRevB.66.235112
- J. Bouchet, F. Jollet, G. Zerah, High-pressure lattice dynamics and thermodynamic properties of Th: an ab initio study of phonon dispersion curves, Phys. Rev. B 74 (2006) 134304. https://doi.org/10.1103/PhysRevB.74.134304
- Y. Lu, D. Li, B. Wang, R. Li, P. Zhang, Electronic structures, mechanical and thermodynamic properties of ThN from first-principles calculations, J. Nucl. Mater. 408 (2011) 136. https://doi.org/10.1016/j.jnucmat.2010.11.007
- P. Modak, A.K. Verma, First-principles investigation of electronic, vibrational, elastic, and structural properties of ThN and UN up to 100 GPa, Phys. Rev. B 84 (2011), 024108. https://doi.org/10.1103/PhysRevB.84.024108
- R. Atta-Fynn, A.K. Ray, Density functional study of the actinide nitrides, Phys. Rev. B 76 (2007) 115101. https://doi.org/10.1103/PhysRevB.76.115101
- D. Perez Daroca, A.M. Llois, H.O. Mosca, Point defects in thorium nitride: a first-principles study, J. Nucl. Mater. 480 (2016) 1. https://doi.org/10.1016/j.jnucmat.2016.07.057
- S. Aydin, A. Tatar, Y.O. Ciftci, A theoretical study for thorium monocarbide (ThC), J. Nucl. Mater. 429 (2012) 55. https://doi.org/10.1016/j.jnucmat.2012.05.038
- I.S. Lim, G.E. Scuseria, The screened hybrid density functional study of metallic thorium carbide, Chem. Phys. Lett. 460 (2008) 137. https://doi.org/10.1016/j.cplett.2008.06.008
- I.R. Shein, K.I. Shein, A.L. Ivanovskii, First-principle study of B1-like thorium carbide, nitride and oxide, J. Nucl. Mater. 353 (2006) 19. https://doi.org/10.1016/j.jnucmat.2006.02.075
- I.R. Shein, K.I. Shein, A.L. Ivanovskii, Elastic properties of thorium ceramics ThX (X = C, N, O, P, As, Sb, S, Se), Tech. Phys. Lett. 33 (2007) 128. https://doi.org/10.1134/S1063785007020113
- D. Perez Daroca, S. Jaroszewicz, A.M. Llois, H.O. Mosca, Phonon spectrum, mechanical and thermophysical properties of thorium carbide, J. Nucl. Mater. 437 (2013) 135. https://doi.org/10.1016/j.jnucmat.2013.01.350
- D. Perez Daroca, S. Jaroszewicz, A.M. Llois, H.O. Mosca, First-principles study of point defects in thorium carbide, J. Nucl. Mater. 454 (2014) 217. https://doi.org/10.1016/j.jnucmat.2014.07.046
- D. Perez Daroca, A.M. Llois, H.O. Mosca, A first-principles study of He, Xe, Kr and O incorporation in thorium carbide, J. Nucl. Mater. 460 (2015) 216. https://doi.org/10.1016/j.jnucmat.2015.02.015
- D. Perez Daroca, A.M. Llois, H.O. Mosca, Diffusion in thorium carbide: a firstprinciples study, J. Nucl. Mater. 467 (2015) 572. https://doi.org/10.1016/j.jnucmat.2015.10.011
- J.D. Greiner, D.T. Peterson, J.F. Smith, Comparison of the singlecrystal elastic constants of Th and a ThC0.063 alloy, J. Appl. Phys. 48 (1977) 3357. https://doi.org/10.1063/1.324221
- H. Kleykamp, Thorium Carbides, Gmelin Handbook of Inorganic and Organometallic Chemestry, Eighth Ed. Thorium Supplement, C6, Springer, Berlin, 1992.
- L. Gerward, J. Staun Olsen, U. benedict, J.-P. Itie, J.C. Spirlet, The crystal structure and the equation of state of thorium nitride for pressures up to 47 GPa, J. Appl. Crystallogr. 18 (1985) 339. https://doi.org/10.1107/S0021889885010421
- M. Freyss, First-principles study of uranium carbide: accommodation of point defects and of helium, xenon, and oxygen impurities, Phys. Rev. B 81 (2010), 014101. https://doi.org/10.1103/PhysRevB.81.014101
- http://theory.cm.utexas.edu/henkelman/code/bader/.
- Greg Mills, Hannes Jonsson, Quantum and thermal effects in H2 dissociative adsorption: evaluation of free energy barriers in multidimensional quantum systems, Phys. Rev. Lett. 72 (1994) 1124. https://doi.org/10.1103/PhysRevLett.72.1124
- P. Giannozzi, et al., Quantum ESPRESSO: a modular and open-source software project for quantum simulations of materials, J. Phys. Condens. Matter 21 (2009) 395502. https://doi.org/10.1088/0953-8984/21/39/395502
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996) 3865. https://doi.org/10.1103/PhysRevLett.77.3865
- N. Troullier, J.L. Martins, Efficient pseudopotentials for plane-wave calculations, Phys. Rev. B 43 (1991) 1993. https://doi.org/10.1103/PhysRevB.43.1993
- C.pberrjkusUPF. http://www.quantum-espresso.org.
- N.pbe-kjpawUPF. http://www.quantum-espresso.org.
- H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13 (1976) 5188. https://doi.org/10.1103/PhysRevB.13.5188
- M. Methfessel, A.T. Paxton, High-precision sampling for Brillouin-zone integration in metals, Phys. Rev. B 40 (1989) 3616. https://doi.org/10.1103/PhysRevB.40.3616
Cited by
- Mechanical and thermodynamic stability, structural, electronics and magnetic properties of new ternary thorium-phosphide silicides ThSixP1-x: First-principles investigation and p vol.53, pp.2, 2021, https://doi.org/10.1016/j.net.2020.07.019