DOI QR코드

DOI QR Code

Computational study of protactinium incorporation effects in Th and Th compounds

  • Daroca, D. Perez (Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica) ;
  • Llois, A.M. (Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica) ;
  • Mosca, H.O. (Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica)
  • Received : 2019.07.30
  • Accepted : 2020.03.16
  • Published : 2020.10.25

Abstract

Protactinium contamination is a mayor issue in the thorium fuel cycle. We investigate, in this work, the consequences of Pa incorporation in vacancy defects and interstitials in Th, ThC and ThN. We calculate charge transfers and lattice distortions due to these incorporations as well as migration paths and energies involved in the diffusion of Pa.

Keywords

References

  1. T. Abram, S. Ion, Generation-IV nuclear power: a review of the state of the science, Energy Pol. 36 (2008) 4323. https://doi.org/10.1016/j.enpol.2008.09.059
  2. H. Wang, et al., Electronic structure, elastic and thermal transport properties of thorium monocarbide based on first-principles study, J. Nucl. Mater. 524 (2019) 141. https://doi.org/10.1016/j.jnucmat.2019.06.032
  3. H. Gy€orgy, Sz Czifrus, The utilization of thorium in Generation IV reactors, Prog. Nucl. Energy 93 (2016) 306. https://doi.org/10.1016/j.pnucene.2016.09.007
  4. D. Perez Daroca, Ab initio modeling of point defects, self-diffusion, and incorporation of impurities in thorium, Solid State Commun. 252 (2017) 11. https://doi.org/10.1016/j.ssc.2017.01.002
  5. Y. Yan, et al., Mechanical stability and superconductivity of PbO-type phase of thorium monocarbide at high pressure, Comput. Mater. Sci. 136 (2017) 238. https://doi.org/10.1016/j.commatsci.2017.05.008
  6. C. Yu, et al., Structural phase transition of ThC under high pressure, Sci. Rep. 7 (2017) 96. https://doi.org/10.1038/s41598-017-00226-4
  7. D. Perez Daroca, A.M. Llois, H.O. Mosca, Modeling of oxygen incorporation in Th, ThC, and ThN by density functional theory calculations, J. Nucl. Mater. 496 (2017) 124. https://doi.org/10.1016/j.jnucmat.2017.09.023
  8. M. Siddique, A.U. Rahman, A. Iqbal, S. Azam, A first-principles theoretical investigation of the structural, electronic and magnetic properties of cubic thorium carbonitrides ThCxN(1-x), Nucl. Eng. Technol. 51 (2019) 1373. https://doi.org/10.1016/j.net.2019.03.003
  9. F. Yang, J. Du, G. Jiang, Th doped carbon clusters ThCn (n=17): stability and bonding natures, Comput. Theor. Chem. 1159 (2019) 7. https://doi.org/10.1016/j.comptc.2019.05.003
  10. B.D. Sahoo, K.D. Joshi, T.C. Kaushik, High pressure structural stability of ThN: ab-initio study, J. Nucl. Mater. 521 (2019) 161. https://doi.org/10.1016/j.jnucmat.2019.04.038
  11. Y.L. Li, J. Cai, D. Mo, Y.D. Wang, First principle study on the predicted phase transition of MN (M=Zr, La and Th), J. Phys. Condens. Matter 31 (2019) 335402. https://doi.org/10.1088/1361-648X/ab1f9a
  12. U.E. Humphrey, M.U. Khandaker, Viability of thorium-based nuclear fuel cycle for the next generation nuclear reactor: issues and prospects, Renew. Sustain. Energy Rev. 97 (2018) 259. https://doi.org/10.1016/j.rser.2018.08.019
  13. P. Rodriguez, C.v. Sundaram, Nuclear and materials aspects of the thorium fuel cycle, J. Nucl. Mater. 100 (1981) 227. https://doi.org/10.1016/0022-3115(81)90534-1
  14. M. Petit, et al., Determination of the 233Pa(n, f) reaction cross section from 0.5 to 10 MeV neutron energy using the transfer reaction 232Th(3He, p)234Pa, Nucl. Phys. 735 (2004) 345. https://doi.org/10.1016/j.nuclphysa.2004.02.017
  15. G. Vladuca, et al., Calculation of the neutron-induced fission cross section of 233Pa, Phys. Rev. C 69 (2004), 021604(R).
  16. R. Lorenz, H.L. Scherff, N. Toussaint, G. Vos, Preparation of Th-Pa alloys and determination of the solubility of Pa in Th, J. Nucl. Mater. 37 (1970) 203. https://doi.org/10.1016/0022-3115(70)90085-1
  17. F. Schmitz, M. Fock, Diffusion of thorium, protactinium and uranium in facecentred cubic thorium, J. Nucl. Mater. 21 (1967) 317. https://doi.org/10.1016/0022-3115(67)90183-3
  18. N. Richard, S. Bernard, F. Jollet, M. Torrent, Plane-wave pseudopotential study of the light actinides, Phys. Rev. B 66 (2002) 235112. https://doi.org/10.1103/PhysRevB.66.235112
  19. J. Bouchet, F. Jollet, G. Zerah, High-pressure lattice dynamics and thermodynamic properties of Th: an ab initio study of phonon dispersion curves, Phys. Rev. B 74 (2006) 134304. https://doi.org/10.1103/PhysRevB.74.134304
  20. Y. Lu, D. Li, B. Wang, R. Li, P. Zhang, Electronic structures, mechanical and thermodynamic properties of ThN from first-principles calculations, J. Nucl. Mater. 408 (2011) 136. https://doi.org/10.1016/j.jnucmat.2010.11.007
  21. P. Modak, A.K. Verma, First-principles investigation of electronic, vibrational, elastic, and structural properties of ThN and UN up to 100 GPa, Phys. Rev. B 84 (2011), 024108. https://doi.org/10.1103/PhysRevB.84.024108
  22. R. Atta-Fynn, A.K. Ray, Density functional study of the actinide nitrides, Phys. Rev. B 76 (2007) 115101. https://doi.org/10.1103/PhysRevB.76.115101
  23. D. Perez Daroca, A.M. Llois, H.O. Mosca, Point defects in thorium nitride: a first-principles study, J. Nucl. Mater. 480 (2016) 1. https://doi.org/10.1016/j.jnucmat.2016.07.057
  24. S. Aydin, A. Tatar, Y.O. Ciftci, A theoretical study for thorium monocarbide (ThC), J. Nucl. Mater. 429 (2012) 55. https://doi.org/10.1016/j.jnucmat.2012.05.038
  25. I.S. Lim, G.E. Scuseria, The screened hybrid density functional study of metallic thorium carbide, Chem. Phys. Lett. 460 (2008) 137. https://doi.org/10.1016/j.cplett.2008.06.008
  26. I.R. Shein, K.I. Shein, A.L. Ivanovskii, First-principle study of B1-like thorium carbide, nitride and oxide, J. Nucl. Mater. 353 (2006) 19. https://doi.org/10.1016/j.jnucmat.2006.02.075
  27. I.R. Shein, K.I. Shein, A.L. Ivanovskii, Elastic properties of thorium ceramics ThX (X = C, N, O, P, As, Sb, S, Se), Tech. Phys. Lett. 33 (2007) 128. https://doi.org/10.1134/S1063785007020113
  28. D. Perez Daroca, S. Jaroszewicz, A.M. Llois, H.O. Mosca, Phonon spectrum, mechanical and thermophysical properties of thorium carbide, J. Nucl. Mater. 437 (2013) 135. https://doi.org/10.1016/j.jnucmat.2013.01.350
  29. D. Perez Daroca, S. Jaroszewicz, A.M. Llois, H.O. Mosca, First-principles study of point defects in thorium carbide, J. Nucl. Mater. 454 (2014) 217. https://doi.org/10.1016/j.jnucmat.2014.07.046
  30. D. Perez Daroca, A.M. Llois, H.O. Mosca, A first-principles study of He, Xe, Kr and O incorporation in thorium carbide, J. Nucl. Mater. 460 (2015) 216. https://doi.org/10.1016/j.jnucmat.2015.02.015
  31. D. Perez Daroca, A.M. Llois, H.O. Mosca, Diffusion in thorium carbide: a firstprinciples study, J. Nucl. Mater. 467 (2015) 572. https://doi.org/10.1016/j.jnucmat.2015.10.011
  32. J.D. Greiner, D.T. Peterson, J.F. Smith, Comparison of the singlecrystal elastic constants of Th and a ThC0.063 alloy, J. Appl. Phys. 48 (1977) 3357. https://doi.org/10.1063/1.324221
  33. H. Kleykamp, Thorium Carbides, Gmelin Handbook of Inorganic and Organometallic Chemestry, Eighth Ed. Thorium Supplement, C6, Springer, Berlin, 1992.
  34. L. Gerward, J. Staun Olsen, U. benedict, J.-P. Itie, J.C. Spirlet, The crystal structure and the equation of state of thorium nitride for pressures up to 47 GPa, J. Appl. Crystallogr. 18 (1985) 339. https://doi.org/10.1107/S0021889885010421
  35. M. Freyss, First-principles study of uranium carbide: accommodation of point defects and of helium, xenon, and oxygen impurities, Phys. Rev. B 81 (2010), 014101. https://doi.org/10.1103/PhysRevB.81.014101
  36. http://theory.cm.utexas.edu/henkelman/code/bader/.
  37. Greg Mills, Hannes Jonsson, Quantum and thermal effects in H2 dissociative adsorption: evaluation of free energy barriers in multidimensional quantum systems, Phys. Rev. Lett. 72 (1994) 1124. https://doi.org/10.1103/PhysRevLett.72.1124
  38. P. Giannozzi, et al., Quantum ESPRESSO: a modular and open-source software project for quantum simulations of materials, J. Phys. Condens. Matter 21 (2009) 395502. https://doi.org/10.1088/0953-8984/21/39/395502
  39. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996) 3865. https://doi.org/10.1103/PhysRevLett.77.3865
  40. N. Troullier, J.L. Martins, Efficient pseudopotentials for plane-wave calculations, Phys. Rev. B 43 (1991) 1993. https://doi.org/10.1103/PhysRevB.43.1993
  41. C.pberrjkusUPF. http://www.quantum-espresso.org.
  42. N.pbe-kjpawUPF. http://www.quantum-espresso.org.
  43. H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13 (1976) 5188. https://doi.org/10.1103/PhysRevB.13.5188
  44. M. Methfessel, A.T. Paxton, High-precision sampling for Brillouin-zone integration in metals, Phys. Rev. B 40 (1989) 3616. https://doi.org/10.1103/PhysRevB.40.3616

Cited by

  1. Mechanical and thermodynamic stability, structural, electronics and magnetic properties of new ternary thorium-phosphide silicides ThSixP1-x: First-principles investigation and p vol.53, pp.2, 2021, https://doi.org/10.1016/j.net.2020.07.019