• Title/Summary/Keyword: Thin copper film

Search Result 259, Processing Time 0.025 seconds

Study of Thermal Behaviors on sub-50 nm Copper Nanoparticles by Selective Laser Sintering Process for Flexible Applications (선택적 레이저 공정을 이용한 구리 나노 입자의 소결 특징 분석 및 플렉서블 전자 소자 제작 기술 개발에 관한 연구)

  • Gwon, Jin-Hyeong;Jo, Hyeon-Min;Lee, Ha-Beom;Eom, Hyeon-Jin;Go, Seung-Hwan
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.134-134
    • /
    • 2016
  • The effect of different thermal treatments on the sub-50 nm copper nanoparticles is examined in the aspects of chemical, electrical and surface morphology. The copper nanoparticles are chemically synthesized and fabricated for paste-type solution. Simple bar coating method is practiced as a deposition process to form copper thin film on a typical slide glass. Deposited copper thin films are annealed by two different routes: general tube furnace with 99.99 % Ar atmosphere and selective laser sintering process. The thermal behavior of the different thermal-treated copper thin films is compared by SEM, XRD, FT-IR and XPS analysis. In this study, the laser sintering process ensures low annealing temperature, fast working speed and ambient-accessible route. Moreover, the laser-sintered copper thin film shows good electrical property and enhanced chemical stability than conventional thermal annealing process. Consequently, the proposed laser sintering process can be compatible with plastic substrate for flexible applications.

  • PDF

Electrochemical Characteristics of the Silicon Thin Films on Copper Foil Prepared by PECVD for the Negative Electrodes for Lithium ion Rechargeable Battery (PECVD법으로 구리 막 위에 증착된 실리콘 박막의 이차전지 음전극으로서의 전기화학적 특성)

  • Shim Heung-Taek;Jeon Bup-Ju;Byun Dongjin;Lee Joong Kee
    • Journal of the Korean Electrochemical Society
    • /
    • v.7 no.4
    • /
    • pp.173-178
    • /
    • 2004
  • Silicon thin film were synthesized from silane and argon gas mixture directly on copper foil by rf PECVD and then lithium ion batteries were prepared from them employed as the negative electrodes without any further treatment. In the present study, two different kinds of silicon thin films, amorphous silicon and copper silicide were prepared by changing deposition temperature. Amorphous silicon film was prepared below $200^{\circ}C$, but copper silicide film with granular shape was formed by the reaction between silicon radical and diffused copper ions under elevating temperature above $400^{\circ}C$. The amorphous silicon film gives higher capacity than copper silicide, but the capacity decreases sharply with charge-discharge cycling. This is possibly due to severe volume changes. The cyclability is improved, however, by employing the copper silicide as a negative electrode. The copper silicide plays an important role as an active material of the electrode, which mitigates volume change cause by the existence of silicon and copper chemical bonding and provides low electrical resistance as well.

Synthesis and Properties of CuNx Thin Film for Cu/Ceramics Bonding

  • Chwa, Sang-Ok;Kim, Keun-Soo;Kim, Kwang-Ho
    • The Korean Journal of Ceramics
    • /
    • v.4 no.3
    • /
    • pp.222-226
    • /
    • 1998
  • $Cu_3N$ film deposited on silicon oxide substrate by r.f. reactive sputtering technique. Synthesis and properties of copper nitride film were investigated for its possible application to Cu metallization as adhesive interlayer between copper and $SiO_2. Cu_3N$ film was synthesized at the substrate temperature ranging from $100^{\circ}C$ to $200^{\circ}C$ and at nitrogen gas ratio above $X_{N2}=0.4. Cu_3N, CuN_x$, and FGM-structured $Cu/CuN_x$ films prepared in this work passed Scotch-tape test and showed improved adhesion property to silicon oxide substrate compared with Cu film. Electrical resistivity of copper nitride film had a dependency on its lattice constant and was ranged from 10-7 to 10-1 $\Omega$cm. Copper nitride film was, however, unstable when it was annealed at the temperature above $400^{\circ}C$.

  • PDF

Growth and Annealing Effect of Cu thin Films Using Electroplating Technique (전해도금법을 이용한 구리 박막의 성장 및 열처리 효과)

  • 박병남;강현재;최시영
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.10
    • /
    • pp.1-8
    • /
    • 2003
  • Copper thin films were deposited on a Cu/Ta/Si substrate using the electroplating technique. Deposition rate was about 200 nm/min in proportion to current density and in inverse proportion to flow rate. Resistivity of copper thin film was approximately 2.1 ${\mu}$Ωcm and Int$\sub$(111)//Int$\sub$(200)/ ratio of copper film was 5.4 and no significant impurities were detected. After the deposition, electroplating copper films were annealed at various temperatures in a background pressure of 10$\^$-3/ torr. The resistivity of copper thin films were improved by ∼17 % and texture was improved by ∼40 % after annealing at 170$^{\circ}C$. The stress in films was not reduced much after annealing below 170$^{\circ}C$.

Investigation of TaNx diffusion barrier properties using Plasma-Enhanced ALD for copper interconnection

  • Han, Dong-Seok;Mun, Dae-Yong;Gwon, Tae-Seok;Kim, Ung-Seon;Hwang, Chang-Muk;Park, Jong-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.178-178
    • /
    • 2010
  • With the scaling down of ULSI(Ultra Large Scale Integration) circuit of CMOS(Complementary Metal Oxide Semiconductor)based electronic devices, the electronic devices become more faster and smaller size that are promising field of semiconductor market. However, very narrow line width has some disadvantages. For example, because of narrow line width, deposition of conformal and thin barrier is difficult. Besides, proportion of barrier width is large, thus resistance is high. Conventional PVD(Physical Vapor Deposition) thin films are not able to gain a good quality and conformal layer. Hence, in order to get over these side effects, deposition of thin layer used of ALD(Atomic Layer Deposition) is important factor. Furthermore, it is essential that copper atomic diffusion into dielectric layer such as silicon oxide and hafnium oxide. If copper line is not surrounded by diffusion barrier, it cause the leakage current and devices degradation. There are some possible methods for improving the these secondary effects. In this study, TaNx, is used of Tertiarybutylimido tris (ethylamethlamino) tantalum (TBITEMAT), was deposited on the 24nm sized trench silicon oxide/silicon bi-layer substrate with good step coverage and high quality film using plasma enhanced atomic layer deposition (PEALD). And then copper was deposited on TaNx barrier using same deposition method. The thickness of TaNx was 4~5 nm. TaNx film was deposited the condition of under $300^{\circ}C$ and copper deposition temperature was under $120^{\circ}C$, and feeding time of TaNx and copper were 5 seconds and 5 seconds, relatively. Purge time of TaNx and copper films were 10 seconds and 6 seconds, relatively. XRD, TEM, AFM, I-V measurement(for testing leakage current and stability) were used to analyze this work. With this work, thin barrier layer(4~5nm) with deposited PEALD has good step coverage and good thermal stability. So the barrier properties of PEALD TaNx film are desirable for copper interconnection.

  • PDF

Fully CMOS-compatible Process Integration of Thin film Inductor with a Sputtered Bottom NiFe Core (스퍼터링 방법으로 증착된 하층 NiFe 코어를 갖는 박막인덕터의 CMOS 집적화 공정)

  • 박일용;김상기;구진근;노태문;이대우;김종대
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.2
    • /
    • pp.138-143
    • /
    • 2003
  • A double spiral thin-film inductor with a NiFe magnetic core is integrated with DC-DC converter IC. The NiFe core is deposited on a polyimide film as the thinckness of NiFe is 2.5~3.5 ${\mu}$m. Then, copper conductor line is deposited on the NiFe core with double spiral structure. Process integration is performed by sequential processes of etching the polyimide film deposited both top and bottom of the NiFe core and electroplation copper conductor line from exposed metal pad of the DC-DC converter IC. Process integration is simplified by elimination planarization process for top core because the proposed thin-film inductor has a bottom NiFe core only. Inductor of the fabricated monolithic DC-DC converter IC is 0.53 ${\mu}$H when the area of converter IC and thin-film inductor are 5X5$\textrm{mm}^2$ and 3.5X2.5$\textrm{mm}^2$, respectively. The efficiency is 72% when input voltage and output voltage are 3.5 V and 6 V, respectively at the operation frequency of 8 MHz.

A Study on the Enhancement of Electrical Conductivity of Copper Thin Films Prepared by CVD Technology (화학적기상증착법에 의한 구리박막의 전기전도도 개선에 관한 연구)

  • 조남인;김용석;김창교
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.6
    • /
    • pp.459-466
    • /
    • 2000
  • For the applications in the ultra-large-scale-integration (ULSI) metallization processing copper thin films have been prepared by metal organic chemical vapor deposition (MOCVD) technology on TiN/Si substrates. The films have been deposited with varying the experimental conditions of substrate temperatures and copper source vapor pressures. The films were then annealed in a vacuum condition after the deposition and the annealing effect to the electrical conductivity of the films was measured. The grain size and the crystallinity of the films were observed to be increased by the post annealing and the electrical conductivity was also increased. The best electrical property of the copper film was obtained by in-situ annealing treatment at above 40$0^{\circ}C$ for the sample prepared at 18$0^{\circ}C$ of the substrate temperature.

  • PDF

Characterization of thin film properties of Copper(II)-Phthalocyanine using a near-field scanning microwave microscope (근접장 마이크로파 현미경을 이용한 Copper(II)-phthalocyanine 박막의 특성 연구)

  • Park, Mie-Hwa;Lee, Kie-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.460-463
    • /
    • 2003
  • We report the microwave reflection coefficient $S_{11}$ of copper(II)-phthalocyanine(CuPc) using a near-field microwave microscope(NSMM) in order to understand the intrinsic electromagnetic properties of organic materials. For a NSMM system, a high-quility microstip resonator coupled with a dielectric resonator was used. The reflection coefficient $S_{11}$ was changed by the preparation conditions of CuPc thin films. We compared the reflection coefficient with crystal phase, surface morphology, UV absorption spectra and x-ray diffraction results.

  • PDF

Deposition of CuInSe2 Thin Films Using Stable Copper and Indium-selenide Precursors through Two-stage MOCVD Method

  • Park, Jong-Pil;Kim, Sin-Kyu;Park, Jae-Young;Ok, Kang-Min;Shim, Il-Wun
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.4
    • /
    • pp.853-856
    • /
    • 2009
  • Highly polycrystalline copper indium diselenide (CuInSe2, CIS) thin films were deposited on glass or ITO glass substrates by two-stage metal organic chemical vapor deposition (MOCVD) at relatively mild conditions, using Cuand In/Se-containing precursors. First, pure Cu thin film was prepared on glass or ITO glass substrates by using a single-source precursor, bis(ethylbutyrylacetate)copper(II) or bis(ethylisobutyrylacetato)copper(II). Second, on the resulting Cu films, tris(N,N-ethylbutyldiselenocarbamato)indium(III) was treated to produce CuInSe2 films by MOCVD method at 400 ${^{\circ}C}$. These precursors are very stable in ambient conditions. In our process, it was quite easy to obtain high quality CIS thin films with less impurities and uniform thickness. Also, it was found that it is easy to control the stoichiometric ratio of relevant elements on demands, leading to Cu or In rich CIS thin films. These CIS films were analyzed by XRD, SEM, EDX, and Near-IR spectroscopy. The optical band gap of the stoichiometric CIS films was about 1.06 eV, which is within an optimal range for harvesting solar radiation energy.

Manufacturing Process Effect on Fatigue Properties for Copper Thin Film (구리박막의 피로특성에 관한 제조공정의 영향)

  • An, Joong-Hyok;Park, Jun-Hyub;Kim, Yun-Jae
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1783-1786
    • /
    • 2007
  • The copper film coated by Sn is often used in various applications such as LCD, Mobile Phone and etc. Especially, when the film is used as tape carrier package(TCP) of LCD panel, the film is repeatedly applied by mechanical or(and) thermal stress and then is often failed. Therefore, to guarantee the reliability of the electrical devices using the film, the tensile and fatigue characteristics of the film are important. In this study, to obtain the tensile and fatigue characteristics of the film, the specimen was fabricated by etching process to make a smooth specimen of 2000 ${\mu}m$ width, 8000 ${\mu}m$ length and 15.26 ${\mu}m$ thickness. The 2 kinds of specimen were fabricated by other manufacturing process. These specimens had values of Young's modulus(80.2GPa) lower than literature values(108${\sim}$145GPa) for bulk values, but had high values of the yield and ultimate strength as 317MPa and 437MPa, respectively. And fatigue test of load-control with 20Hz frequency was performed.

  • PDF