• Title/Summary/Keyword: Thermo-mechanical Stress

검색결과 288건 처리시간 0.023초

A magneto-thermo-viscoelastic problem with fractional order strain under GN-II model

  • Deswal, Sunita;Kalkal, Kapil Kumar;Sheoran, Sandeep Singh
    • Structural Engineering and Mechanics
    • /
    • 제63권1호
    • /
    • pp.89-102
    • /
    • 2017
  • In this work, we present a theoretical framework to study the thermovisco-elastic responses of homogeneous, isotropic and perfectly conducting medium subjected to inclined load. Based on recently developed generalized thermoelasticity theory with fractional order strain, the two-dimensional governing equations are obtained in the context of generalized magnetothermo-viscoelasticity theory without energy dissipation. The Kelvin-Voigt model of linear viscoelasticity is employed to describe the viscoelastic nature of the material. The resulting formulation of the field equations is solved analytically in the Laplace and Fourier transform domain. On the application of inclined load at the surface of half-space, the analytical expressions for the normal displacement, strain, temperature, normal stress and tangential stress are derived in the joint-transformed domain. To restore the fields in physical domain, an appropriate numerical algorithm is used for the inversion of the Laplace and Fourier transforms. Finally, we have demonstrated the effect of magnetic field, viscosity, mechanical relaxation time, fractional order parameter and time on the physical fields in graphical form for copper material. Some special cases have also been deduced from the present investigation.

Thermomechanical Properties of Functionally Graded $Al-SiC_p$ Composites

  • Song, Dae-Hyun;Park, Yong-Ha;Park, Yong-Ho;Park, Ik-Min;Cho, Kyung-Mox
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.85-86
    • /
    • 2006
  • A theoretical model is applied to the analysis of thermomechanical properties of $Al-SiC_p$ FGMs in this study. Functionally graded $Al-SiC_p$ composites ($Al-SiC_p$ FGMs) consisted with 10 layers gradually changing volume fractions of Al and $SiC_p$ were fabricated using the pressureless infiltration technique. $Al-SiC_p$ FGMs plates of total thickness of 3mm, 5mm and 7mm with fairly uniform distribution and compositional gradient of $SiC_p$ reinforcement in the Al matrix throughout the thickness was successfully fabricated. The curvature of $Al-SiC_p$ FGM plates was measured to check the internal stress distribution predicted via a theoretical model for the analysis of thermo-mechanical deformation. The evolution of curvature and also internal stresses in response to temperature variations could be predicted for the different combinations of geometric thickness of FGM plates. Theoretical prediction of thermally induced stress distribution makes it possible to design FGM structures without any critical failure during the usage of them.

  • PDF

HAZ 연화부를 가진 TMCP형 고장력강판의 압축최종강도에 관한 연구 - 제 2 보 (Ultimate Compressive Strength Analysis of TMCP High Tensile Steel Plates with HAZ Softening(2nd Report))

  • 백점기;고재용
    • Journal of Welding and Joining
    • /
    • 제9권2호
    • /
    • pp.44-50
    • /
    • 1991
  • The use of high tensile steel plates is increasing in the fabrication of ship and offshore structures. The softening region which has lower yield stress than base metal is located to prevent cracking in the conventional high tensile steel. Also, thermo mechanical control process(TMCP) steel with low carbon equivalent has the softening region which occurs in the heat affected zone when high heat input weld is carried out. The softening region in the high tensile steel gives rise to serious effect on structural strength such as tensile strength, fatigue strength and ultimate strength. In order to make a reliable structural design using high tensile steel plates, the influence of the softening on plate strength should be evaluated in advance. In the previous paper, the authors discussed the ultimate compressive strength of 50HT steel square plates with softening region. In this paper, the ultimate compressive strength with varying the yield stress of softening region and the aspect ratio of the plate is investigated by using the elasto-plastic large deformation finite element method.

  • PDF

Al 7075의 마찰교반 용접부 특성에 관한 연구 (Weldability of Al 7075 Alloy according to different tools and welding conditions by F.S.W)

  • 장석기;전정일
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제30권1호
    • /
    • pp.30-41
    • /
    • 2006
  • This paper shows mechanical Properties and behaviors of macrostructures for specimens welded by F.S.W according to welding conditions and tool dimensions with $6.35mm_t$ aluminum 7075-T651 alloy plate. It apparently results in defect-free weld zone in case transition speed was changed to 15mm/min 61mm/min and 124mm/min under conditions of tool rotation speed such as 800rpm. 1250rpm and 1600rpm respectively with tool's Pin diameter 40mm and 60mm. The optimum mechanical property, ultimate stress,${\sigma}_Y=470Mpa$ is obtained at the condition of 124mm/min of travel speed with 800rpm of tool rotation speed using full screw type pin. shoulder dia. $20{\phi}mm$ pin dia. $6{\phi}mm$ and pin length 6mm. The full-screw type and the half-screw type pin shows the similar behaviors of weldability. It is found that the size of nugget is depended on tool transition speed and tool dimension by macrostructures of the cross section of weld zone.

Al 7075의 마찰교반 용접부 특성에 관한 연구 (Weldability of Al 7075 Alloy according to different tools and welding conditions by F.S.W)

  • 장석기;전정일
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 전기학술대회논문집
    • /
    • pp.348-358
    • /
    • 2005
  • This paper showed mechanical properties and behaviors of macrostructures for specimens welded by F.S.W according to welding conditions and tool with 6.35$mm_t$ aluminum 7075-T651alloy plate. It resulted in defect-free weld zone in case tool rotation speed was 800rpm, 1250rpm and 1600rpm respectively that transition speed was changed to 15mm/min, 61mm/min and 124mm/min with tool's pin diameter 4${\Phi}$mm and 6${\Phi}$mm. The optimum mechanical property, ultimate stress,${\sigma}_Y$=470Mpa was obtained at the condition of 124mm/min of travel speed with 800rpm of tool rotation speed using full screw type pin, shoulder dia. 20${\Phi}$mm, pin dia.6${\Phi}$mm and pin length 6mm. The full-screw type and the half-screw type pin showed the similar behaviors of weldability. It is found that the size of nugget was depended on tool transition speed and tool dimension by macrostructures of the cross section of weld zone.

  • PDF

Pressure Contact Interconnection for High Reliability Medium Power Integrated Power Electronic Modules

  • Yang, Xu;Chen, Wenjie;He, Xiaoyu;Zeng, Xiangjun;Wang, Zhaoan
    • Journal of Power Electronics
    • /
    • 제9권4호
    • /
    • pp.544-552
    • /
    • 2009
  • This paper presents a novel spring pressure contact interconnect technique for medium power integrated power electronics modules (IPEMs). The key technology of this interconnection is a spring which is made from Be-Cu alloy. By means of the string pressure contact, sufficient press-contact force and good electrical interconnection can be achieved. Another important advantage is that the spring exhibits excellent performance in enduring thermo-mechanical stress. In terms of manufacture procedure, it is also comparatively simple. A 4 kW half-bridge power inverter module is fabricated to demonstrate the performance of the proposed pressure contact technique. Electrical, thermal and mechanical test results of the packaged device are reported. The results of both the simulation and experiment have proven that a good performance can be achieved by the proposed pressure contact technique for the medium power IPEMs.

사각주 후류가 선형터빈익렬의 유동 및 열전달에 미치는 영향에 관한 연구 (Influence of the Wake Behind Rectangular Bars on the Flow and Heat Transfer in the Linear Turbine Cascade)

  • 윤순현;심재경;우창수;이대희
    • 대한기계학회논문집B
    • /
    • 제23권7호
    • /
    • pp.864-870
    • /
    • 1999
  • An experimental study Is conducted in a four-vane linear cascade in order to examine the influence of the wake behind rectangular bars on the flow and heat transfer characteristics. Flow and heat transfer measurements are made for the inlet Reynolds number of 66000(based on chord length and free-stream velocity). Turbulent intensity and stress are measured using a hot-wire anemometer, and to measure the convective heat transfer coefficients on the blade surface liquid crystal/gold film Intrex technique is used. Each of experimental cases is characterized by the unsteadiness measured at the entrance of the cascade. The wake behind the rectangular bars enhances the turbulent motion of the flow in the cascade passage. It also promotes the boundary layer development and transition. The results show that heat transfer coefficients on the blade surface increase with increasing unsteadiness.

Thermal distortion analysis method for TMCP steel structures using shell element

  • Ha, Yun-sok;Rajesh, S.R.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제1권2호
    • /
    • pp.95-100
    • /
    • 2009
  • As ships become larger, thicker and higher tensile steel plate are used in shipyard. Though special chemical compositions are required for high-tensile steels, recently they are made by the TMCP (Thermo-Mechanical control process) methodology. The increased Yield / Tensile strength of TMCP steels compared to the normalized steel of same composition are induced by suppressing the formation of Ferrite and Pearlite in favor of strong and tough Bainite while being transformed from Austenite. But this Bainite phase could be vanished by another additional thermal cycle like welding and heating. As thermal deformations are deeply related by yield stress of material, the study for prediction of plate deformation by heating should niflect the principle of TMCP steels. The present study is related to the development of an algorithm which could calculate inherent strain. In this algorithm, not only the mechanical principles of thermal deformations, but also the initial portion of Bainite is considered when calculating inherent strain. Distortion analysis results by these values showed good agreements with experimental results for normalized steels and TMCP steels during welding and heating. This algorithm has also been used to create an inherent strain database of steels in Class rule.

흙과 열유도 토목섬유 접촉면의 마찰저항 특성 (The Effect of Forced Temperature Change Cycles on Physical and Mechanical Properties of Sand and Weathered Granite Soil)

  • 신승민;신춘원;유충식
    • 한국지반신소재학회논문집
    • /
    • 제16권2호
    • /
    • pp.175-181
    • /
    • 2017
  • 본 논문에서는 보강토옹벽에 주로 사용되는 화강풍화토 내부에 열선 및 지오그리드를 설치하여 온도변화에 따른 화강풍화토와 지오그리드 사이의 전단력의 변화를 분석하였다. 실제 보강제로 보강되어있는 화강풍화토 내부에 열선에 의한 온도상승이 지반과 보강재 사이의 전단력에 어떠한 영향을 미치는지 확인하기 위해 대형직접전단시험장치를 이용하여 전단시험을 진행하였으며 몰드내부에는 가열된 물로 열을 공급할 수 있는 실리콘재질의 열선이 설치되어 지반의 온도를 상승시키며 온도에 따른 전단 특성을 분석하였다. 또한 축방향 하중을 다르게 하여 온도상승에 의한 지반의 내부마찰각의 변화를 검토하였다.

Ti-39Nb-6Zr 합금의 산소함량에 따른 시효특성 변화 (Effect of Oxygen Content on Aging Properties of Ti-39Nb-6Zr alloy)

  • 한찬별;이동근
    • 열처리공학회지
    • /
    • 제35권2호
    • /
    • pp.88-95
    • /
    • 2022
  • Titanium alloy for bio-medical applications have been developed to reduce the toxicity of alloying elements and avoid the stress-shielding effect which is caused by relatively high elastic modulus compared to bone. Ti-39Nb-6Zr (TNZ40) alloy of elastic modulus exhibits around 40 GPa in the case of beta single phase. However, the strength of this alloy is lower than the other types of titanium alloys. Many research found that adding oxygen to beta-titanium alloys is beneficial for improving the strength through solid solution strengthening. In this study, TNZ40 ingots with addition of O were prepared by an arc remelting process (Ti-39Nb-6Zr-0.16O (wt.%), Ti-39Nb-6Zr-0.26O (wt.%)). Thermo-mechanical processing (i.e., heat treatment, cold swaging and aging heat treatment) has been performed under various conditions. Therefore, the aim of this study is to investigate the effect of oxygen content and ω phase formation on microstructure and mechanical properties.