Browse > Article
http://dx.doi.org/10.12656/jksht.2022.35.2.88

Effect of Oxygen Content on Aging Properties of Ti-39Nb-6Zr alloy  

Han, Chan Byeol (Department of Materials Science and Metallurgical Engineering, Sunchon National University)
Lee, Dong-Geun (Department of Materials Science and Metallurgical Engineering, Sunchon National University)
Publication Information
Journal of the Korean Society for Heat Treatment / v.35, no.2, 2022 , pp. 88-95 More about this Journal
Abstract
Titanium alloy for bio-medical applications have been developed to reduce the toxicity of alloying elements and avoid the stress-shielding effect which is caused by relatively high elastic modulus compared to bone. Ti-39Nb-6Zr (TNZ40) alloy of elastic modulus exhibits around 40 GPa in the case of beta single phase. However, the strength of this alloy is lower than the other types of titanium alloys. Many research found that adding oxygen to beta-titanium alloys is beneficial for improving the strength through solid solution strengthening. In this study, TNZ40 ingots with addition of O were prepared by an arc remelting process (Ti-39Nb-6Zr-0.16O (wt.%), Ti-39Nb-6Zr-0.26O (wt.%)). Thermo-mechanical processing (i.e., heat treatment, cold swaging and aging heat treatment) has been performed under various conditions. Therefore, the aim of this study is to investigate the effect of oxygen content and ω phase formation on microstructure and mechanical properties.
Keywords
Ti-39Nb-6Zr alloy; Beta titanium alloy; Solid solution hardening; Aging; Oxygen content;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Geetha, U. Kamachi Mudali, A. K. Gogia, R. Asokamani, and B. Raj : Corrosion Science, 46 (2004) 877-892.   DOI
2 M. Tahara, H. Y. Kim, H. Hosoda, and S. Miyazaki : Acta Materialia, 57 (2009) 2461-2469.   DOI
3 T. K. Lee, S. W. Lee, I. -S. Kim, Y. H. Moon, H. S. Kim , and C. H . Park : Journal of Alloys and compounds, 828 (2020) 154401.   DOI
4 S. Ozan, J. Lin, Y. Li, R. Ipek, and C. Wen : Acta Biomaterialia, 20 (2015) 176-187.   DOI
5 S. Ozan, J. Lin, Y. Zhang, Y. Li, and C. Wen : J. Mater. Res. Technol., 9(2) (2020) 2308-2318.   DOI
6 Z. Liu and G. Welsch : Metallurgical Transactions A, 19 (1988) 527-542.   DOI
7 F. B. Vicente, D. R. N. Correa, T. A. G. Donato, V. E. Arana-Chavez, M. A. R. Buzalaf, and C. R. Grandini : Materials, 7(1) (2014) 542-553.   DOI
8 K. Yokota, A. Bahador, K. Shitara, J. Umeda, and K. Kondoh : Materials Science and Engineering A, 802 (2021) 140677.   DOI
9 J. M. Chaves, O. Florencio, P. S. Silva Jr, P. W. B. Marques, and S. G. Schenider : Journal of Alloys and Compounds, 616 (2014) 420-425.   DOI
10 R. Karre, M. K. Niranjan, and S. R. Dey : Materials Science and Engineering C, 50 (2015) 52-58.   DOI
11 S. Ozan, J. Lin, Y. Zhang, Y. Li, and C. Wen : J. Mater. Res. Technol., 9(2) (2020) 2308-2318.   DOI
12 X. Ji, I. Gutierrez-Urrutia, S. Emura, and K. Tsuchiya : MATEC Web of Conferences, 321 (2020) 11059.   DOI
13 M. S. Kim and C. S. Kim : J. of the Korean Society For Heat Treatment, 35(1) (2022) 8-19.
14 C. -S. Youn, Y. -K. Park, J. -H. Kim, S. -C. Lee, and D. -G. Lee : J. of the Korean Society for Heat Treatment, 30(6) (2017) 279-284.   DOI
15 H. J. Kwon, K. R. L im , Y. T. Lee, D. G. Lee, J. H. Lee, and S. E. Kim : Korean J. Met. Mater., 54(12) (2016) 925-930.   DOI
16 J. J. Bae, J. T. Yeom, C. H. Park, J. K. Hong, S. W. Kim, S. Y. Yoon, and S. W. Lee : J. of the Korean Society For Heat Treatment, 29(6) (2016) 264-271.   DOI
17 K. Inaekyan, V. Brailovski, S. Prokoshkin, V. Pushin, S. Dubinskiy, and V. Sheremetyev : Materials Characterization, 103 (2015) 65-74.   DOI
18 J. -H. Jang and D. -G. Lee : Metals, 11(2) (2021) 268.   DOI
19 D. Banerjee and J. C. Williams : Acta Materialia, 61(3) (2013) 844-879.   DOI
20 J. G. Niu, D. H. Ping, T. Ohno, and W. T. Geng : Modelling Simu. Mater. Sci. Eng., 22 (2014) 015007.   DOI