Browse > Article
http://dx.doi.org/10.12989/sem.2017.63.1.089

A magneto-thermo-viscoelastic problem with fractional order strain under GN-II model  

Deswal, Sunita (Department of Mathematics, Guru Jambheshwar University of Science & Technology)
Kalkal, Kapil Kumar (Department of Mathematics, Guru Jambheshwar University of Science & Technology)
Sheoran, Sandeep Singh (Department of Mathematics, Guru Jambheshwar University of Science & Technology)
Publication Information
Structural Engineering and Mechanics / v.63, no.1, 2017 , pp. 89-102 More about this Journal
Abstract
In this work, we present a theoretical framework to study the thermovisco-elastic responses of homogeneous, isotropic and perfectly conducting medium subjected to inclined load. Based on recently developed generalized thermoelasticity theory with fractional order strain, the two-dimensional governing equations are obtained in the context of generalized magnetothermo-viscoelasticity theory without energy dissipation. The Kelvin-Voigt model of linear viscoelasticity is employed to describe the viscoelastic nature of the material. The resulting formulation of the field equations is solved analytically in the Laplace and Fourier transform domain. On the application of inclined load at the surface of half-space, the analytical expressions for the normal displacement, strain, temperature, normal stress and tangential stress are derived in the joint-transformed domain. To restore the fields in physical domain, an appropriate numerical algorithm is used for the inversion of the Laplace and Fourier transforms. Finally, we have demonstrated the effect of magnetic field, viscosity, mechanical relaxation time, fractional order parameter and time on the physical fields in graphical form for copper material. Some special cases have also been deduced from the present investigation.
Keywords
fractional order strain; GN-II model; magnetic field; viscosity; Laplace and Fourier transforms; inclined load;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Deswal, S., Sheoran, S.S. and Kalkal K.K. (2013), "A twodimensional problem in magneto-thermoelasticity with laser pulse under different boundary conditions", J. Mech. Mater. Struct., 8(8), 441-459.   DOI
2 Deswal, S. and Yadav, R. (2014), "Thermodynamic behaviour of microstretch viscoelastic solids with internal heat source", Can. J. Phys., 92(5), 425-434.   DOI
3 Deswal, S. and Kalkal, K.K. (2015), "Three-dimensional halfspace problem within the framework of two-temperature thermo-viscoelasticity with three-phase-lag effects", Appl. Math. Model., 39(23), 7093-7112.   DOI
4 Dhaliwal, R. and Sherief, H. (1980), "Generalized thermoelasticity for anisotropic media", Quart. Appl. Math., 38(1), 1-8.   DOI
5 El-Karamany, A.S. and Ezzat, M.A. (2004), "Thermal shock problem in generalized thermo-viscoelasticity under four theories", Int. J. Eng. Sci., 42(7), 649-671.   DOI
6 Ezzat, M.A., El-Karamany, A.S., El-Bary A.A. and Fayik M.A. (2013), "Fractional calculus in one-dimensional isotropic thermo-viscoelasticity", Comp. Rend. Mec., 341(7), 553-566.   DOI
7 Green, A.E. and Lindsay, K.A. (1972), "Thermoelasticity", J. Elast., 2(1), 1-7.   DOI
8 Green, A.E. and Naghdi, P.M. (1991), "A re-examination of the basic postulates of thermo-mechanics", Proc. Royal Soc. London A., 432(1885), 171-194.   DOI
9 Green, A.E. and Naghdi, P.M. (1992), "On undamped heat waves in an elastic solid", J. Therm. Stress., 15(2), 253-264.   DOI
10 Green, A.E. and Naghdi, P.M. (1993), "Thermoelasticity without energy dissipation", J. Elast., 31(3), 189-208.   DOI
11 Hetnarski, R.B. and Ignaczak, J. (1999), "Generalized thermoelasticity", J. Therm. Stress., 22(4-5), 451-476.   DOI
12 Honig, G. and Hirdes, U. (1984), "A method for the numerical inversion of Laplace transforms", J. Comp. Appl. Math., 10(1), 113-132.   DOI
13 Huilgol, R. and Phan-Thien, N. (1997), Fluid Mechanics of Viscoelasticity, Elsevier, Amsterdam.
14 Ilioushin, A.A. and Pobedria, B.E. (1970), Fundamentals of the Mathematical Theories of Thermal Viscoelasticity, Nauka, Moscow.
15 Kaliski, S. and Nowacki, W. (1962), "Combined elastic and electromagnetic waves produced by thermal shock in the case of a medium of finite electric conductivity", Bull. L'acade. Polon. Sci., 10, 213-223.
16 Magin, R.L. and Royston, T.J. (2010) "Fractional order elastic model of cartilage: A multi-scale approach", Comm. Non. Sci. Num. Sim., 15(3), 657-664.   DOI
17 Kumar, R. and Partap, G. (2011), "Vibration analysis of wave motion in micropolar thermoviscoelastic plate", Struct. Eng. Mech., 39(6), 861-875.   DOI
18 Kumar, R., Sharma, N. and Lata P. (2016), "Effects of Hall current in a transversely isotropic magneto-thermoelastic with and without energy dissipation due to normal force", Struct. Eng. Mech., 57(1), 91-103.   DOI
19 Lord, H. and Shulman, Y.A. (1967), "Generalized dynamical theory of thermoelasticity", J. Mech. Phys. Solid., 15(5), 299-309.   DOI
20 Meral, F.C., Royston, T.J. and Magin R. (2010), "Fractional calculus in viscoelasticity: An experimental study", Comm. Non. Sci. Num. Sim., 15(4), 939-945.   DOI
21 Miller, K.S. and Ross, B. (1993), An Introduction to Fractional Calculus and Fractional Differential Equation, Wiley, New York.
22 Nayfeh, A.H. and Nemat-Nasser, S. (1972), "Electro-magnetothermoelastic plane waves in solids with thermal relaxation", J. Appl. Mech., 39(1), 108-113.   DOI
23 Othman, M.I.A. and Song Y. (2006) "The effect of rotation on the reflection of magneto-thermoelastic waves under thermoelasticity without energy dissipation", Acta Mech., 184(1), 189-204.   DOI
24 Paria, G. (1962), "On magneto-thermoelastic plane waves", Math. Proc. Cam. Phil. Soc., 58, 527-531.   DOI
25 Rakshit, M. and Mukhopadhyay, B. (2007), "A two dimensional thermoviscoelastic problem due to instantaneous point heat source", Math. Comp. Model., 46(11), 1388-1397.   DOI
26 Ross, B. (1977), "The development of fractional calculus 1695-1900", His. Math., 4(1), 75-89.   DOI
27 Willson, A.J. (1963), "The propagation of magneto-thermoelastic plane waves", Math. Proc. Cam. Phil. Soc., 59(2), 483-488.   DOI
28 Sharma, N., Kumar R. and Ram P. (2008), "Dynamical behaviour of generalized thermoelastic diffusion with two relaxation times in frequency domain", Struct. Eng. Mech., 28(1), 19-38.   DOI
29 Tanner, R.I. (1988), Engineering Rheology, Oxford University Press Inc., New York.
30 Vernotte, P. (1958), "Les panadoxes de la theorie continue de l‟equatioin de la chaleur", C.R. Acad. Sci., 246, 3154-3155.
31 Youssef, H.M. (2006), "Generalized magneto-thermoelasticity in a conducting medium with variable material properties", Appl. Math. Comp., 173(2), 822-833.   DOI
32 Othman, M.I.A. and Ahmed E.A.A. (2015), "The effect of rotation on piezo-thermoelastic medium using different theories", Struct. Eng. Mech., 56(4), 649-665.   DOI
33 Youssef, H.M. (2016), "Theory of generalized thermoelasticity with fractional order strain", J. Vib. Cont., 22(18), 3840-3857.   DOI
34 Cattaneo, C. (1958), "Sur une forme de l‟equation de la chaleur elinant le paradoxes d‟une propagation instantance", C.R. Acad. Sci., 247, 431-432.
35 Baksi, A., Roy, B.K. and Bera, R.K. (2008), "Study of two dimensional viscoelastic problems in generalized thermoelastic medium with heat source", Struct. Eng. Mech., 29(6), 673-687.   DOI
36 Caputo, M. and Mainardi, F. (1971) "A new dissipation model based on memory mechanism", Pure Appl. Geophys., 91(1), 134-147.   DOI
37 Caputo, M. (1974), "Vibrations of an infinite viscoelastic layer with a dissipative memory", J. Acous. Soc. Am., 56(3), 897-904.   DOI
38 Chandrasekharaiah, D.S. (1986), "Thermoelasticty with second sound: A review", Appl. Mech. Rev., 39(3), 355-376.   DOI
39 Chandrasekharaiah, D.S. (1998), "Hyperbolic thermoelasticity: A review of recent literature", Appl. Mech. Rev., 51, 705-729.   DOI
40 Das, P. and Kanoria, M. (2012), "Magneto-thermoelastic response in a perfectly conducting medium with three-phase-lag effect", Acta Mech., 223(4), 811-828.   DOI
41 Deswal, S. and Kalkal, K. (2011), "A two-dimensional generalized electro-magneto-thermo-viscoelastic problem for a half-space with diffusion", Int. J. Therm. Sci., 50(5), 749-759.   DOI