• Title/Summary/Keyword: Thermal Conductivity.

Search Result 2,686, Processing Time 0.03 seconds

Growth of Hexagonal Boron Nitride Thin Films on Silicon Using a Single Source Precursors

  • Boo, Jin-Hyo;Lee, Soon-Bo;Casten Rohr;Wilson Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1998.02a
    • /
    • pp.120-120
    • /
    • 1998
  • Boron nitride (BN) films have attracted a growing interest for a variety of t technological applications due to their excellent characteristics, namely hardness, c chemical inertness, and dielectrical behavior, etc. There are two crystalline phases 1551; of BN that are analogous to phases of carbon. Hexagonal boron nitride (h-BN) has a a layered s$\sigma$ucture which is spz-bonded structure similar to that of graphite, and is t the stable ordered phase at ambient conditions. Cubic boron nitride (c-BN) has a z zinc blende structure with sp3-bonding like as diamond, 따ld is the metastable phase a at ambient conditions. Among of their prototypes, especially 삼Ie c-BN is an i interesting material because it has almost the same hardness and thermal c conductivity as di없nond. C Conventionally, significant progress has been made in the experimental t techniques for synthesizing BN films using various of the physical vapor deposition 밍ld chemical vapor deposition. But, the major disadvantage of c-BN films is that t they are much more difficult to synthesize than h-BN films due to its narrow s stability phase region, high compression stress, and problem of nitrogen source c control. Recent studies of the metalorganic chemical vapor deposition (MOCVD) of I III - V compound have established that a molecular level understanding of the d deposition process is mandatory in controlling the selectivity parameters. This led t to the concept of using a single source organometallic precursor, having the c constituent elements in stoichiometric ratio, for MOCVD growth of 삼Ie required b binary compound. I In this study, therefore, we have been carried out the growth of h-BN thin f films on silicon substrates using a single source precursors. Polycrystalline h-BN t thin films were deposited on silicon in the temperature range of $\alpha$)() - 900 $^{\circ}$C from t the organometallic precursors of Boron-Triethylamine complex, (CZHs)3N:BRJ, and T Tris(dimethylamino)Borane, [CH3}zNhB, by supersonic molecular jet and remote p plasma assisted MOCVD. Hydrogen was used as carrier gas, and additional nitrogen w was supplied by either aDlIDonia through a nozzle, or nitrogen via a remote plasma. T The as-grown films were characterized by Fourier transform infrared spectroscopy, x x-ray pthotoelectron spectroscopy, Auger electron spectroscopy, x-ray diffraction, t transmission electron diffraction, optical transmission, and atomic force microscopy.roscopy.

  • PDF

Combustive Properties of Pinus rigida Plates Painted with Alkylenediaminoalkyl-Bis-Phosphonic Acid Salts (Mn+) (알킬렌디아미노알킬-비스-포스폰산 금속염으로 처리된 리기다 소나무판의 연소성질)

  • Park, Myung-Ho;Chung, Yeong-Jin
    • Fire Science and Engineering
    • /
    • v.28 no.6
    • /
    • pp.28-34
    • /
    • 2014
  • Two kinds of new piperazinomethyl-bis-phosphonic acid $M^{n+}$ ($PIPEABPM^{n+}$) were synthesized and their combustive properties of Pinus rigida plates treated with $PIPEABPM^{n+}$ were tested in comparison with the previously synthesized chemicals. Pinus rigida specimens were painted in three times with 15 wt% $PIPEABPM^{n+}$ solutions at the room temperature. After drying specimen treated with chemicals, combustive properties were examined by the cone calorimeter (ISO 5660-1). As a result, the combustion-retardation properties were partially increased by due to the treated $PIPEABPM^{n+}$ solutions in the virgin Pinus rigida. Especially, the specimens treated with $PIPEABPM^{n+}$ showed both the lower peak heat release rate ($HRR_{peak}$) (173.48~145.36) s and total heat release rate (THRR) (73.0~55.2) $MJ/m^2$ than those of virgin piperazinomethyl-bis-phosphonic acid (PIPEABP)-plate. Compared with virgin PIPEABP-plate, the specimens treated with the $PIPEABPM^{n+}$ showed low combustive properties. However the specimens treated with $PIPEABPM^{n+}$ showed both the shorter time to ignition (TTI) (58~18) s and the time to flameout (Tf) (564~456) s than those of virgin PIPEABP-plate by increasing the thermal conductivity.

An Introduction to the DECOVALEX-2019 Task G: EDZ Evolution - Reliability, Feasibility, and Significance of Measurements of Conductivity and Transmissivity of the Rock Mass (DECOVALEX-2019 Task G 소개: EDZ Evolution - 굴착손상영역 평가를 위한 수리전도도 및 투수량계수 측정의 신뢰도, 적합성 및 중요성)

  • Kwon, Saeha;Min, Ki-Bok
    • Tunnel and Underground Space
    • /
    • v.30 no.4
    • /
    • pp.306-319
    • /
    • 2020
  • Characterizations of Excavation Damage Zone (EDZ), which is hydro-mechanical degrading the host rock, are the important issues on the geological repository for the spent nuclear fuel. In the DECOVALEX 2019 project, Task G aimed to model the fractured rock numerically, describe the hydro-mechanical behavior of EDZ, and predict the change of the hydraulic factor during the lifetime of the geological repository. Task G prepared two-dimensional fractured rock model to compare the characteristics of each simulation tools in Work Package 1, validated the extended three-dimensional model using the TAS04 in-situ interference tests from Äspö Hard Rock Laboratory in Work Package 2, and applied the thermal and glacial loads to monitor the long-term hydro-mechanical response on the fractured rock in Work Package 3. Each modelling team adopted both Finite Element Method (FEM) and Discrete Element Method (DEM) to simulate the hydro-mechanical behavior of the fracture rock, and added the various approaches to describe the EDZ and fracture geometry which are appropriate to each simulation method. Therefore, this research can introduce a variety of numerical approaches and considerations to model the geological repository for the spent nuclear fuel in the crystalline fractured rock.

Progress in Composite Polymer Membrane for Application as Separator in Lithium Ion Battery (리튬 이온 전지의 분리막으로 사용하기 위한 복합 고분자 막의 동향)

  • Oh, Seok Hyeon;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.30 no.4
    • /
    • pp.228-241
    • /
    • 2020
  • Separators, which produces physical layer between a cathode and anode, are getting enormous attention as the quality of the separator determines the performance of lithium ion batteries (LIBs). Porous membranes based on polyethylene (PE) and polypropylene (PP) are generally utilized as the separator of LIBs because of their high electrochemical stability and suitable mechanical strength. However, low thermal resistance and wettability of PE and PP membranes limited the potential of LIBs. Operating at the temperature exceeding the melting point of membranes, the separators change their structures which lead to short circuit of LIBs. Low wettability of the separators corresponds to low ionic conductivity which increases the cell resistance. To overcome these weaknesses of PE and PP separators, different types of separator were prepared by co-electrospinning, applying coating layer, forming core shell around membrane, and papermaking method. The synthesized separator greatly enhanced the heat resistance and wettability of separator and mechanical properties like flexibility and tensile strength. In this review different type of polymer membrane used as separator in lithium ion battery are discussed.

Microstructure analyses of aluminum nitride (AlN) using transmission electron microscopy (TEM) and electron back-scattered diffraction (EBSD) (투과전자현미경과 전자후방산란회절을 이용한 AlN의 미세구조 분석)

  • Joo, Young Jun;Park, Cheong Ho;Jeong, Joo Jin;Kang, Seung Min;Ryu, Gil Yeol;Kang, Sung;Kim, Cheol Jin
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.4
    • /
    • pp.127-134
    • /
    • 2015
  • Aluminum nitride (AlN) single crystals have attracted much attention for a next-generation semiconductor application because of wide bandgap (6.2 eV), high thermal conductivity ($285W/m{\cdot}K$), high electrical resistivity (${\geq}10^{14}{\Omega}{\cdot}cm$), and high mechanical strength. The bulk AlN single crystals or thin film templates have been mainly grown by PVT (sublimation) method, flux method, solution growth method, and hydride vapor phase epitaxy (HVPE) method. Since AlN suffers difficulty in commercialization due to the defects that occur during single crystal growth, crystalline quality improvement via defects analyses is necessary. Etch pit density (EPD) analysis showed that the growth misorientations and the defects in the AlN surface exist. Transmission electron microscopy (TEM) and electron back-scattered diffraction (EBSD) analyses were employed to investigate the overall crystalline quality and various kinds of defects. TEM studies show that the morphology of the AlN is clearly influenced by stacking fault, dislocation, second phase, etc. In addition EBSD analysis also showed that the zinc blende polymorph of AlN exists as a growth defects resulting in dislocation initiator.

Synthesis and Spectroscopic Investigations of Some New rganotelluronium alts Based on Dicyclohexyl Telluride (디시클로헥실 텔루르염에 기반한 유기텔루로늄염의 성과 분광학적 분석)

  • Al-Rubaie, Ali Z.;Al-Mudhaffar, Dhafir M. H.;Al-Mowali, Ali H.;Asker, Kahtan A.
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.5
    • /
    • pp.530-535
    • /
    • 2009
  • Dicyclohexyl telluride was obtained in a high yield by the reaction of cyclohexyl bromide with NaTeH(prepared in situ) in an aqueous ethanolic solution. A series of new organotelluronium salts of the general formula ${(cyclo-C_6H_11)}_2Te(R)X$ (where R = $CH_3$, X = I (1); R = $C_2H_5$, X = Br(2); R = $C_2H_5$, X = I (3); R = C_3H_5$, X = Br (4)) were prepared by the reaction of ${(cyclo-C_6H_11)}_2Te$ with the corresponding alkyl halide. Reaction of 1 with NaBPh4 gave compound 5 ( i.e. R = CH3, X = BPh4 ‒) in 78% yield. Reaction of ${(cyclo-C_6H_11)}_2Te$ with benzyl bromide and 4-bromophenacyl bromide gave unexpectedly dibenzylcyclohexyltelluronium bromide (6) and bis(4-bromophenacyl)cyclohexyltelluronium bromide (7), respectively. Reaction of 6 with NaBPh4 gave the corresponding tetraphenylborate derivative (8) in high yield. $^1H$ NMR studies revealed that in $CDCl_3$solution compound 1 eliminated alkyl halide. Conductivity, IR, $^1H\;and\;^{13}C$ NMR and thermal data for the new compounds are presented and discussed.

The Analysis of the Breakdown Voltage according to the Change of JTE Structures and Design Parameters of 4H-SiC Devices (4H-SiC 소자의 JTE 구조 및 설계 조건 변화에 따른 항복전압 분석)

  • Koo, Yoon-Mo;Cho, Doo-Hyung;Kim, Kwang-Soo
    • Journal of IKEEE
    • /
    • v.19 no.4
    • /
    • pp.491-499
    • /
    • 2015
  • Silicon Carbide(SiC) has large advantage in high temperature and high voltage applications because of its high thermal conductivity and large band gap energy. When using SiC to design power semiconductor devices, edge termination techniques have to be adjusted for its maximum breakdown voltage characteristics. Many edge termination techniques have been proposed, and the most appropriate technique for SiC device is Junction Termination Extension(JTE). In this paper, the change of breakdown voltage efficiency ratio according to the change of doping concentration and passivation oxide charge of each JTE techniques is demonstrated. As a result, the maximum breakdown voltage ratio of Single Zone JTE(SZ-JTE), Double Zone JTE(DZ-JTE), Multiple Floating Zone JTE(MFZ-JTE), and Space Modulated JTE(SM-JTE) is 98.24%, 99.02%, 98.98%, 99.22% each. MFZ-JTE has the smallest and SZ-JTE has the largest sensitivity of breakdown voltage ratios according to the change of JTE doping concentration. Additionally the degradation of breakdown voltage due to the passivation oxide charge is analyzed, and the sensitivity is largest in SZ-JTE and smallest in MFZ-JTE, too. In this paper, DZ-JTE and SM-JTE is the best efficiency JTE techniques than MFZ-JTE which needs large doping concentration in short JTE width.

Effect of surface roughness of AlN substrate and sintering temperature on adhesion strength of Ag thick film conductors (AlN 기판의 표면조도 및 소결온도가 Ag 후막도체의 접착강도에 미치는 영향)

  • Koo, Bon Keup
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.3
    • /
    • pp.83-90
    • /
    • 2020
  • The effect of substrate surface roughness and sintering temperature on the adhesion strength of Ag-based thick film conductors formed on AlN substrates with excellent thermal conductivity was studied. The adhesion strength of the thick-film conductor manufactured using an AlN substrate having a surface roughness (Ra) of 0.5 was higher than that of a thick-film conductor manufactured using a substrate having a surface roughness greater or smaller than this. In the case of a substrate with a surface roughness of less than 0.5, the contact area between the Ag thick film conductor and the substrate was relatively smaller than that of a substrate with a surface roughness of 0.5, resulting in a lower adhesive strength. On the other hand, when a substrate having a surface roughness of more than 0.5 was used, it was found that the conductor film was not completely adhered to the substrate, and as a result, it was found that the adhesive strength was small. In addition, it was found that the surface smoothness of the Ag-based thick film conductor film obtained by sintering at 850℃ was the best compared to the smoothness of the conductor film obtained by sintering at different sintering temperatures, and as a result, it was found that the adhesive strength of the conductor film was the highest.

Analysis of Gas-to-Liquid Phase Transformation of Hydrogen in Cryogenic Cooling Tube (초저온 냉각튜브 내 수소기체의 액체수소로의 상변환 분석)

  • Lee, Dae-Won;Nguyen, Hoang Hai;So, Myeong-Ki;Nah, In-Wook;Park, Dong-Wha;Kim, Kyo-Seon
    • Korean Chemical Engineering Research
    • /
    • v.56 no.1
    • /
    • pp.49-55
    • /
    • 2018
  • Under the era of energy crisis, hydrogen energy is considered as one of the most potential alternative energies. Liquid hydrogen has much higher energy density per unit volume than gas hydrogen and is counted as the excellent energy storage method. In this study, Navier-Stokes equations based on 2-phase model were solved by using a computational fluid dynamics program and the liquefaction process of gaseous hydrogen passing through a cryogenic cooling tube was analyzed. The copper with high thermal conductivity was assumed as the material for cryogenic cooling tube. For different inlet velocities of 5 m/s, 10 m/s and 20 m/s for hydrogen gas, the distributions of fluid temperature, axial and radial velocities, and volume fractions of gas and liquid hydrogens were compared. These research results are expected to be used as basic data for the future design and fabrication of cryogenic cooling tube to transform the hydrogen gas into liquid hydrogen.

Variations in the Properties of LSGM System Electrolyte with Sr and Mg Addition and Sintering Conditions (Sr과 Mg 첨가량 및 소결조건에 따른 LSGM계 전해질의 특성 변화)

  • Lee, Mi-Jai;Park, Sang-Sun;Choi, Byung-Hyun
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.4
    • /
    • pp.352-358
    • /
    • 2002
  • The variations of the properties of Sr and Mg added $LaGaO_3$ system electrolyte with the amount of the additive and the sintering condition were studied. Main phase was (La$_{1-x}Sr_x)(Ga_{1-y}Mg_y)O_{3-\delta}$ phase for each compositions and the single phases $(La_{0.85}Sr_{0.15})(Ga_{0.85}Mg_{0.15})O_{3-\delta},(La_{0.85}Sr_{0.15})(Ga_{0.8}Mg_{0.2})O_{3-\delta}$ and $(La_{0.8}Sr_{0.2})(Ga_{0.8}Mg_{0.2})O{3-\delta}$ were obtained with the decrease in the sintering temperature and Mg addition. Thermal expansion coefficient of the $(La_{0.8}Sr_{0.2})(Ga_{0.8}Mg_{0.2})O_{3-\delta}$ decreased with the increase in the sintering temperature. Electric conductivity of electrolyte sintered at $1500^{circ}C$ for 1h was 0.14 S/cm at $800^{circ}C$ with 1 mA.