DOI QR코드

DOI QR Code

Progress in Composite Polymer Membrane for Application as Separator in Lithium Ion Battery

리튬 이온 전지의 분리막으로 사용하기 위한 복합 고분자 막의 동향

  • Oh, Seok Hyeon (Nano Science and Engineering, Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University) ;
  • Patel, Rajkumar (Energy and Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University)
  • 오석현 (연세대학교 언더우드국제대학 융합과학공학부 나노과학공학) ;
  • 파텔 라즈쿠마 (연세대학교 언더우드 국제대학 융합과학공학부 에너지환경과학공학)
  • Received : 2020.07.07
  • Accepted : 2020.08.04
  • Published : 2020.08.31

Abstract

Separators, which produces physical layer between a cathode and anode, are getting enormous attention as the quality of the separator determines the performance of lithium ion batteries (LIBs). Porous membranes based on polyethylene (PE) and polypropylene (PP) are generally utilized as the separator of LIBs because of their high electrochemical stability and suitable mechanical strength. However, low thermal resistance and wettability of PE and PP membranes limited the potential of LIBs. Operating at the temperature exceeding the melting point of membranes, the separators change their structures which lead to short circuit of LIBs. Low wettability of the separators corresponds to low ionic conductivity which increases the cell resistance. To overcome these weaknesses of PE and PP separators, different types of separator were prepared by co-electrospinning, applying coating layer, forming core shell around membrane, and papermaking method. The synthesized separator greatly enhanced the heat resistance and wettability of separator and mechanical properties like flexibility and tensile strength. In this review different type of polymer membrane used as separator in lithium ion battery are discussed.

리튬 이온 전지의 양극과 음극 사이에 물리적인 층을 만들어주는 분리막은 분리막의 품질에 따라 리튬 이온 전지의 성능을 결정함에 따라 많은 관심을 받고 있다. 일반적으로 전기화학적 안정성과 적절한 역학적 강도를 갖고 있는 폴리에틸렌과 폴리프로필렌으로 구성된 다공성 막이 리튬 이온 전지의 분리막으로 사용된다. 하지만 폴리에틸렌과 폴리프로필렌의 낮은 열 저항성과 젖음성으로 인해 리튬 이온 전지의 잠재력을 충분히 끌어내지 못한다. 녹는점 이상의 온도에 도달하게 되면 분리막의 구조가 변형되고 리튬 이온 전지는 단락된다. 분리막의 낮은 젖음성은 낮은 이온전도도와 부합하고, 이는 전지의 저항을 상승시킨다. 이러한 폴리에틸렌과 폴리프로필렌 분리막의 단점을 극복하고자 이중 전기방사방법, 코팅 층 도포 방법, 코어 셸 구조 형성 방법, 제지법 등 여러 가지 방법들이 연구되었다. 언급된 방법들로 합성된 분리막들은 열 저항성과 젖음성이 크게 향상되었고 유연성과 인장 강도 같은 역학적 특성도 향상되었다. 본 리뷰 논문에는 각기 다른 방법으로 형성된 리튬이온 전지의 분리막에 대해서 다루고 있다.

Keywords

References

  1. P. Arora and Z. Zhang, "Battery separators", Chem. Rev., 104, 4419 (2004). https://doi.org/10.1021/cr020738u
  2. T.-W. Zhang, T. Tian, B. Shen, Y.-H. Song, and H.-B. Yao, "Recent advances on biopolymer fiber-based membranes for lithium-ion battery separators", Compos. Commun., 14, 7 (2019). https://doi.org/10.1016/j.coco.2019.05.003
  3. H. Lee, M. Yanilmaz, O. Toprakci, K. Fu, and X. Zhang, "A review of recent developments in membrane separators for rechargeable lithium-ion batteries", Energy Environ. Sci., 7, 3857 (2014). https://doi.org/10.1039/C4EE01432D
  4. Y. Li, Q. Li, and Z. Tan, "A review of electrospun nanofiber-based separators for rechargeable lithium-ion batteries", J. Power Sources, 443, 227262 (2019). https://doi.org/10.1016/j.jpowsour.2019.227262
  5. J. K. Koo and Y. S. Choo, "Preparation of porous separators for Zn air batteries through phase inversions of polyethersulfone-PVP solutions", Membr. J., 24, 10 (2014). https://doi.org/10.14579/MEMBRANE_JOURNAL.2014.24.1.10
  6. J. H. Lee, C. H. Park, M. S. Park, and J. H. Kim, "Poly(vinyl alcohol)-based polymer electrolyte membrane for solid-state supercapacitor", Membr. J., 29, 30 (2019). https://doi.org/10.14579/MEMBRANE_JOURNAL.2019.29.1.30
  7. J. H. Kim and S. Y. Lee, "Current status and future research directions of separator membranes for lithium-ion rechargeable batteries", Membr. J., 26, 337 (2016). https://doi.org/10.14579/MEMBRANE_JOURNAL.2016.26.5.337
  8. Y. T. Jeong, J. Ahn, and C. H. Lee, "Preparation and characterization of sulfonated poly (arylene ether sulfone) random copolymer-polyolefin pore-filling separators with metal ion trap capability for li-ion secondary battery", Membr. J., 26, 310 (2016). https://doi.org/10.14579/MEMBRANE_JOURNAL.2016.26.4.310
  9. Y. H. Park and S. Y. Nam, "Characterization of polyolefin separator support membranes with hydrophilic coatings", Membr. J., 27, 92 (2017). https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.1.92
  10. H. Wu, D. Zhuo, D. Kong, and Y. Cui, "Improving battery safety by early detection of internal shorting with a bifunctional separator", Nat. Commun., 5, 5193 (2014). https://doi.org/10.1038/ncomms6193
  11. S. Bai, X. Liu, K. Zhu, S. Wu, and H. Zhou, "Metal-organic framework-based separator for lithium-sulfur batteries", Nat. Energy, 1, 16094 (2016). https://doi.org/10.1038/nenergy.2016.94
  12. M. F. Lagadec, R. Zahn, and V. Wood, "Characterization and performance evaluation of lithium-ion battery separators", Nat. Energy, 4, 16 (2019). https://doi.org/10.1038/s41560-018-0295-9
  13. M. Waqas, S. Ali, C. Feng, D. Chen, J. Han, and W. He, "Recent development in separators for high-temperature lithium-ion batteries", Small, 15, 1901689 (2019). https://doi.org/10.1002/smll.201901689
  14. J. B. Goodenough and K.-S. Park, "The li-ion rechargeable battery: A perspective", J. Am. Chem. Soc., 135, 1167 (2013). https://doi.org/10.1021/ja3091438
  15. T. Lee, W. K. Kim, Y. Lee, M. H. Ryou, and Y. M. Lee, "Effect of $Al_2O_3$ coatings prepared by RF sputtering on polyethylene separators for high-power lithium ion batteries", Macromol. Res., 22, 1190 (2014). https://doi.org/10.1007/s13233-014-2163-1
  16. D. Djian, F. Alloin, S. Martinet, H. Lignier, and J. Y. Sanchez, "Lithium-ion batteries with high charge rate capacity: Influence of the porous separator", J. Power Sources, 172, 416 (2007). https://doi.org/10.1016/j.jpowsour.2007.07.018
  17. Q. Xu, Q. Kong, Z. Liu, X. Wang, R. Liu, J. Zhang, L. Yue, Y. Duan, and G. Cui, "Cellulose/polysulfonamide composite membrane as a high performance lithium-ion battery separator", ACS Sustain. Chem. Eng., 2, 194 (2014). https://doi.org/10.1021/sc400370h
  18. T. H. Cho, M. Tanaka, H. Ohnishi, Y. Kondo, M. Yoshikazu, T. Nakamura, and T. Sakai, "Composite nonwoven separator for lithium-ion battery: Development and characterization", J. Power Sources, 195, 4272 (2010). https://doi.org/10.1016/j.jpowsour.2010.01.018
  19. G. Dong, B. Liu, G. Sun, G. Tian, S. Qi, and D. Wu, "$TiO_2$ nanoshell@polyimide nanofiber membrane prepared via a surface-alkaline-etching and in-situ complexation-hydrolysis strategy for advanced and safe LIB separator", J. Membr. Sci., 577, 249 (2019). https://doi.org/10.1016/j.memsci.2019.02.003
  20. J. Lee, C. L. Lee, K. Park, and I. D. Kim, "Synthesis of an $Al_2O_3$-coated polyimide nanofiber mat and its electrochemical characteristics as a separator for lithium ion batteries", J. Power Sources, 248, 1211 (2014). https://doi.org/10.1016/j.jpowsour.2013.10.056
  21. Y. E. Miao, G. N. Zhu, H. Hou, Y. Y. Xia, and T. Liu, "Electrospun polyimide nanofiber-based nonwoven separators for lithium-ion batteries", J. Power Sources, 226, 82 (2013). https://doi.org/10.1016/j.jpowsour.2012.10.027
  22. N. Sabetzadeh, A. A. Gharehaghaji, and M. Javanbakht, "Porous PAN micro/nanofiber membranes with potential application as lithium-ion battery separators: Physical, morphological and thermal properties", J. Polym. Res., 26, 20 (2019). https://doi.org/10.1007/s10965-018-1678-0
  23. C. Zhu, J. Zhang, J. Xu, X. Yin, J. Wu, S. Chen, Z. Zhu, L. Wang, and H. Wang, "Aramid nanofibers/polyphenylene sulfide nonwoven composite separator fabricated through a facile papermaking method for lithium ion battery", J. Membr. Sci., 588, 117169 (2019). https://doi.org/10.1016/j.memsci.2019.117169
  24. G. Zainab, X. Wang, J. Yu, Y. Zhai, A. Ahmed Babar, K. Xiao, and B. Ding, "Electrospun polyacrylonitrile/polyurethane composite nanofibrous separator with electrochemical performance for high power lithium ion batteries", Mater. Chem. Phys., 182, 308 (2016). https://doi.org/10.1016/j.matchemphys.2016.07.037
  25. M. Xia, Q. Liu, Z. Zhou, Y. Tao, M. Li, K. Liu, Z. Wu, and D. Wang, "A novel hierarchically structured and highly hydrophilic poly(vinyl alcohol-co-ethylene)/poly(ethylene terephthalate) nanoporous membrane for lithium-ion battery separator", J. Power Sources, 266, 29 (2014). https://doi.org/10.1016/j.jpowsour.2014.04.151
  26. H. S. Jeong, D. W. Kim, Y. U. Jeong, and S. Y. Lee, "Effect of phase inversion on microporous structure development of $Al_2O_3$/poly(vinylidene fluoride-hexafluoropropylene)-based ceramic composite separators for lithium-ion batteries", J. Power Sources, 195, 6116 (2010). https://doi.org/10.1016/j.jpowsour.2009.10.085
  27. H. S. Jeong and S. Y. Lee, "Closely packed $SiO_2$ nanoparticles/poly(vinylidene fluoride-hexafluoropropylene) layers-coated polyethylene separators for lithium-ion batteries", J. Power Sources, 196, 6716 (2011). https://doi.org/10.1016/j.jpowsour.2010.11.037
  28. W. Chen, Y. Liu, Y. Ma, and W. Yang, "Improved performance of lithium ion battery separator enabled by co-electrospinnig polyimide/poly(vinylidene fluoride-co-hexafluoropropylene) and the incorporation of $TiO_2$-(2-hydroxyethyl methacrylate)", J. Power Sources, 273, 1127 (2015). https://doi.org/10.1016/j.jpowsour.2014.10.026
  29. L. Wang, Z. Wang, Y. Sun, X. Liang, and H. Xiang, "$Sb_2O_3$ modified PVDF-CTFE electrospun fibrous membrane as a safe lithium-ion battery separator", J. Membr. Sci., 572, 512 (2019). https://doi.org/10.1016/j.memsci.2018.11.041
  30. D. Wu, J. He, M. Zhang, P. Ni, X. Li, and J. Hu, "Fabrication of a novel sandwich-like composite separator with enhanced physical and electrochemical performances for lithium-ion battery", J. Power Sources, 290, 53 (2015). https://doi.org/10.1016/j.jpowsour.2015.04.182
  31. R. Luo, C. Wang, Z. Zhang, W. Lv, Z. Wei, Y. Zhang, X. Luo, and W. He, "Three-dimensional nanoporous polyethylene-reinforced PVDF-HFP separator enabled by dual-solvent hierarchical gas liberation for ultrahigh-rate lithium ion batteries", ACS Appl. Energy Mater., 1, 921 (2018). https://doi.org/10.1021/acsaem.7b00091
  32. G. Ding, B. Qin, Z. Liu, J. Zhang, B. Zhang, P. Hu, C. Zhang, G. Xu, J. Yao, and G. Cui, "A polyborate coated cellulose composite separator for high performance lithium ion batteries", J. Electrochem. Soc., 162, A834 (2015). https://doi.org/10.1149/2.0261506jes
  33. L. Zhang, G. Feng, X. Li, S. Cui, S. Ying, X. Feng, L. Mi, and W. Chen, "Synergism of surface group transfer and in-situ growth of silica-aerogel induced high-performance modified polyacrylo- nitrile separator for lithium/sodium-ion batteries", J. Membr. Sci., 577, 137 (2019). https://doi.org/10.1016/j.memsci.2019.02.002
  34. X. Zhou, L. Yue, J. Zhang, Q. Kong, Z. Liu, J. Yao, and G. Cui, "A core-shell structured polysulfonamide-based composite nonwoven towards high power lithium ion battery separator", J. Electrochem. Soc., 160, A1341 (2013). https://doi.org/10.1149/2.003309jes
  35. C. Shi, J. Dai, S. Huang, C. Li, X. Shen, P. Zhang, D. Wu, D. Sun, and J. Zhao, "A simple method to prepare a polydopamine modified core-shell structure composite separator for application in high-safety lithium-ion batteries", J. Membr. Sci., 518, 168 (2016). https://doi.org/10.1016/j.memsci.2016.06.046
  36. Z. Wei, J. Gu, F. Zhang, Z. Pan, and Y. Zhao, "Core-shell structured nanofibers for lithium ion battery separator with wide shutdown temperature window and stable electrochemical performance", ACS Appl. Polym. Mater., 2, 1989 (2020). https://doi.org/10.1021/acsapm.0c00164
  37. L. Yue, J. Zhang, Z. Liu, Q. Kong, X. Zhou, Q. Xu, J. Yao, and G. Cui, "A heat resistant and flame-retardant polysulfonamide/polypropylene composite nonwoven for high performance lithium ion battery separator", J. Electrochem. Soc., 161, A1032 (2014). https://doi.org/10.1149/2.059406jes
  38. J. Liu, Y. Mo, S. Wang, S. Ren, D. Han, M. Xiao, L. Sun, and Y. Meng, "Ultrastrong and heat-resistant poly(ether ether ketone) separator for dendrite-proof and heat-resistant lithium-ion batteries", ACS Appl. Energy Mater., 2, 3886 (2019). https://doi.org/10.1021/acsaem.9b00568