Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2020.30.4.228

Progress in Composite Polymer Membrane for Application as Separator in Lithium Ion Battery  

Oh, Seok Hyeon (Nano Science and Engineering, Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University)
Patel, Rajkumar (Energy and Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University)
Publication Information
Membrane Journal / v.30, no.4, 2020 , pp. 228-241 More about this Journal
Abstract
Separators, which produces physical layer between a cathode and anode, are getting enormous attention as the quality of the separator determines the performance of lithium ion batteries (LIBs). Porous membranes based on polyethylene (PE) and polypropylene (PP) are generally utilized as the separator of LIBs because of their high electrochemical stability and suitable mechanical strength. However, low thermal resistance and wettability of PE and PP membranes limited the potential of LIBs. Operating at the temperature exceeding the melting point of membranes, the separators change their structures which lead to short circuit of LIBs. Low wettability of the separators corresponds to low ionic conductivity which increases the cell resistance. To overcome these weaknesses of PE and PP separators, different types of separator were prepared by co-electrospinning, applying coating layer, forming core shell around membrane, and papermaking method. The synthesized separator greatly enhanced the heat resistance and wettability of separator and mechanical properties like flexibility and tensile strength. In this review different type of polymer membrane used as separator in lithium ion battery are discussed.
Keywords
separator; lithium ion battery; composite polymer membrane; nanofiber; electrospinning;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 C. Zhu, J. Zhang, J. Xu, X. Yin, J. Wu, S. Chen, Z. Zhu, L. Wang, and H. Wang, "Aramid nanofibers/polyphenylene sulfide nonwoven composite separator fabricated through a facile papermaking method for lithium ion battery", J. Membr. Sci., 588, 117169 (2019).   DOI
2 G. Zainab, X. Wang, J. Yu, Y. Zhai, A. Ahmed Babar, K. Xiao, and B. Ding, "Electrospun polyacrylonitrile/polyurethane composite nanofibrous separator with electrochemical performance for high power lithium ion batteries", Mater. Chem. Phys., 182, 308 (2016).   DOI
3 M. Xia, Q. Liu, Z. Zhou, Y. Tao, M. Li, K. Liu, Z. Wu, and D. Wang, "A novel hierarchically structured and highly hydrophilic poly(vinyl alcohol-co-ethylene)/poly(ethylene terephthalate) nanoporous membrane for lithium-ion battery separator", J. Power Sources, 266, 29 (2014).   DOI
4 H. S. Jeong, D. W. Kim, Y. U. Jeong, and S. Y. Lee, "Effect of phase inversion on microporous structure development of $Al_2O_3$/poly(vinylidene fluoride-hexafluoropropylene)-based ceramic composite separators for lithium-ion batteries", J. Power Sources, 195, 6116 (2010).   DOI
5 H. S. Jeong and S. Y. Lee, "Closely packed $SiO_2$ nanoparticles/poly(vinylidene fluoride-hexafluoropropylene) layers-coated polyethylene separators for lithium-ion batteries", J. Power Sources, 196, 6716 (2011).   DOI
6 W. Chen, Y. Liu, Y. Ma, and W. Yang, "Improved performance of lithium ion battery separator enabled by co-electrospinnig polyimide/poly(vinylidene fluoride-co-hexafluoropropylene) and the incorporation of $TiO_2$-(2-hydroxyethyl methacrylate)", J. Power Sources, 273, 1127 (2015).   DOI
7 L. Wang, Z. Wang, Y. Sun, X. Liang, and H. Xiang, "$Sb_2O_3$ modified PVDF-CTFE electrospun fibrous membrane as a safe lithium-ion battery separator", J. Membr. Sci., 572, 512 (2019).   DOI
8 D. Wu, J. He, M. Zhang, P. Ni, X. Li, and J. Hu, "Fabrication of a novel sandwich-like composite separator with enhanced physical and electrochemical performances for lithium-ion battery", J. Power Sources, 290, 53 (2015).   DOI
9 R. Luo, C. Wang, Z. Zhang, W. Lv, Z. Wei, Y. Zhang, X. Luo, and W. He, "Three-dimensional nanoporous polyethylene-reinforced PVDF-HFP separator enabled by dual-solvent hierarchical gas liberation for ultrahigh-rate lithium ion batteries", ACS Appl. Energy Mater., 1, 921 (2018).   DOI
10 G. Ding, B. Qin, Z. Liu, J. Zhang, B. Zhang, P. Hu, C. Zhang, G. Xu, J. Yao, and G. Cui, "A polyborate coated cellulose composite separator for high performance lithium ion batteries", J. Electrochem. Soc., 162, A834 (2015).   DOI
11 L. Zhang, G. Feng, X. Li, S. Cui, S. Ying, X. Feng, L. Mi, and W. Chen, "Synergism of surface group transfer and in-situ growth of silica-aerogel induced high-performance modified polyacrylo- nitrile separator for lithium/sodium-ion batteries", J. Membr. Sci., 577, 137 (2019).   DOI
12 X. Zhou, L. Yue, J. Zhang, Q. Kong, Z. Liu, J. Yao, and G. Cui, "A core-shell structured polysulfonamide-based composite nonwoven towards high power lithium ion battery separator", J. Electrochem. Soc., 160, A1341 (2013).   DOI
13 C. Shi, J. Dai, S. Huang, C. Li, X. Shen, P. Zhang, D. Wu, D. Sun, and J. Zhao, "A simple method to prepare a polydopamine modified core-shell structure composite separator for application in high-safety lithium-ion batteries", J. Membr. Sci., 518, 168 (2016).   DOI
14 Z. Wei, J. Gu, F. Zhang, Z. Pan, and Y. Zhao, "Core-shell structured nanofibers for lithium ion battery separator with wide shutdown temperature window and stable electrochemical performance", ACS Appl. Polym. Mater., 2, 1989 (2020).   DOI
15 L. Yue, J. Zhang, Z. Liu, Q. Kong, X. Zhou, Q. Xu, J. Yao, and G. Cui, "A heat resistant and flame-retardant polysulfonamide/polypropylene composite nonwoven for high performance lithium ion battery separator", J. Electrochem. Soc., 161, A1032 (2014).   DOI
16 J. Liu, Y. Mo, S. Wang, S. Ren, D. Han, M. Xiao, L. Sun, and Y. Meng, "Ultrastrong and heat-resistant poly(ether ether ketone) separator for dendrite-proof and heat-resistant lithium-ion batteries", ACS Appl. Energy Mater., 2, 3886 (2019).   DOI
17 P. Arora and Z. Zhang, "Battery separators", Chem. Rev., 104, 4419 (2004).   DOI
18 T.-W. Zhang, T. Tian, B. Shen, Y.-H. Song, and H.-B. Yao, "Recent advances on biopolymer fiber-based membranes for lithium-ion battery separators", Compos. Commun., 14, 7 (2019).   DOI
19 H. Lee, M. Yanilmaz, O. Toprakci, K. Fu, and X. Zhang, "A review of recent developments in membrane separators for rechargeable lithium-ion batteries", Energy Environ. Sci., 7, 3857 (2014).   DOI
20 Y. Li, Q. Li, and Z. Tan, "A review of electrospun nanofiber-based separators for rechargeable lithium-ion batteries", J. Power Sources, 443, 227262 (2019).   DOI
21 J. H. Lee, C. H. Park, M. S. Park, and J. H. Kim, "Poly(vinyl alcohol)-based polymer electrolyte membrane for solid-state supercapacitor", Membr. J., 29, 30 (2019).   DOI
22 J. H. Kim and S. Y. Lee, "Current status and future research directions of separator membranes for lithium-ion rechargeable batteries", Membr. J., 26, 337 (2016).   DOI
23 Y. T. Jeong, J. Ahn, and C. H. Lee, "Preparation and characterization of sulfonated poly (arylene ether sulfone) random copolymer-polyolefin pore-filling separators with metal ion trap capability for li-ion secondary battery", Membr. J., 26, 310 (2016).   DOI
24 Y. H. Park and S. Y. Nam, "Characterization of polyolefin separator support membranes with hydrophilic coatings", Membr. J., 27, 92 (2017).   DOI
25 H. Wu, D. Zhuo, D. Kong, and Y. Cui, "Improving battery safety by early detection of internal shorting with a bifunctional separator", Nat. Commun., 5, 5193 (2014).   DOI
26 S. Bai, X. Liu, K. Zhu, S. Wu, and H. Zhou, "Metal-organic framework-based separator for lithium-sulfur batteries", Nat. Energy, 1, 16094 (2016).   DOI
27 M. F. Lagadec, R. Zahn, and V. Wood, "Characterization and performance evaluation of lithium-ion battery separators", Nat. Energy, 4, 16 (2019).   DOI
28 M. Waqas, S. Ali, C. Feng, D. Chen, J. Han, and W. He, "Recent development in separators for high-temperature lithium-ion batteries", Small, 15, 1901689 (2019).   DOI
29 J. B. Goodenough and K.-S. Park, "The li-ion rechargeable battery: A perspective", J. Am. Chem. Soc., 135, 1167 (2013).   DOI
30 J. K. Koo and Y. S. Choo, "Preparation of porous separators for Zn air batteries through phase inversions of polyethersulfone-PVP solutions", Membr. J., 24, 10 (2014).   DOI
31 T. Lee, W. K. Kim, Y. Lee, M. H. Ryou, and Y. M. Lee, "Effect of $Al_2O_3$ coatings prepared by RF sputtering on polyethylene separators for high-power lithium ion batteries", Macromol. Res., 22, 1190 (2014).   DOI
32 D. Djian, F. Alloin, S. Martinet, H. Lignier, and J. Y. Sanchez, "Lithium-ion batteries with high charge rate capacity: Influence of the porous separator", J. Power Sources, 172, 416 (2007).   DOI
33 Q. Xu, Q. Kong, Z. Liu, X. Wang, R. Liu, J. Zhang, L. Yue, Y. Duan, and G. Cui, "Cellulose/polysulfonamide composite membrane as a high performance lithium-ion battery separator", ACS Sustain. Chem. Eng., 2, 194 (2014).   DOI
34 T. H. Cho, M. Tanaka, H. Ohnishi, Y. Kondo, M. Yoshikazu, T. Nakamura, and T. Sakai, "Composite nonwoven separator for lithium-ion battery: Development and characterization", J. Power Sources, 195, 4272 (2010).   DOI
35 G. Dong, B. Liu, G. Sun, G. Tian, S. Qi, and D. Wu, "$TiO_2$ nanoshell@polyimide nanofiber membrane prepared via a surface-alkaline-etching and in-situ complexation-hydrolysis strategy for advanced and safe LIB separator", J. Membr. Sci., 577, 249 (2019).   DOI
36 J. Lee, C. L. Lee, K. Park, and I. D. Kim, "Synthesis of an $Al_2O_3$-coated polyimide nanofiber mat and its electrochemical characteristics as a separator for lithium ion batteries", J. Power Sources, 248, 1211 (2014).   DOI
37 Y. E. Miao, G. N. Zhu, H. Hou, Y. Y. Xia, and T. Liu, "Electrospun polyimide nanofiber-based nonwoven separators for lithium-ion batteries", J. Power Sources, 226, 82 (2013).   DOI
38 N. Sabetzadeh, A. A. Gharehaghaji, and M. Javanbakht, "Porous PAN micro/nanofiber membranes with potential application as lithium-ion battery separators: Physical, morphological and thermal properties", J. Polym. Res., 26, 20 (2019).   DOI