• Title/Summary/Keyword: Test Access Mechanism

Search Result 43, Processing Time 0.018 seconds

Design of Test Access Mechanism for AMBA based SoC (AMBA 기반 SoC 테스트를 위한 접근 메커니즘 설계)

  • Min, Pil-Jae;Song, Jae-Hoon;Yi, Hyun-Bean;Park, Sung-Ju
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.10 s.352
    • /
    • pp.74-79
    • /
    • 2006
  • Test Interface Controller (TIC) provided by ARM Ltd. is widely used for functional testing of System-on-Chip (SoC) adopting Advanced Microcontroller Bus Architecture (AMBA) bus system. Accordingly, this architecture has a deficiency of not being able to concurrently shifting in and out the structural scan test patterns through the TIC and AMBA bus. This paper introduces a new AMBA based Test Access Mechanism (ATAM) for speedy testing of SoCs embedding ARM cores. While preserving the compatability with the ARM TIC, since scan in and out operations can be performed simultaneously, test application time through the expensive Automatic Test Equipment (ATE) can be drastically reduced.

An Efficient Test Access Mechanism for System On a Chip Testing (시스템 온 칩 테스트를 위한 효과적인 테스트 접근 구조)

  • Song, Dong-Seop;Bae, Sang-Min;Gang, Seong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.5
    • /
    • pp.54-64
    • /
    • 2002
  • Recently System On a Chip(SoC) design based on IP cores has become the trend of If design To prevent the testing problem from becoming the bottleneck of the core-based design, defining of an efficient test architecture and a successful test methodology are mandatory. This paper describes a test architecture and a test control access mechanism for SoC based on IEEE 1149.1 boundary,scan. The proposed SoC test architecture is fully compatible with IEEE P1500 Standard for Embedded Core Test(SECT), and applicable for both TAPed cores and Wrapped cores within a SOC with the same test access mechanism. Controlled by TCK, TMS, TDI, and TDO, the proposed test architecture provides a hierarchical test feature.

Development of Simple Reconfigurable Access Mechanism for SoC Testing (재구성 가능한 시스템 칩 테스트 제어기술의 개발)

  • 김태식;민병우;박성주
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.8
    • /
    • pp.9-16
    • /
    • 2004
  • For a System-on-a-Chip(SoC) comprised of multiple IP cores, test control techniques have been developed to perform the internal and external test efficiently relying on the various design for testability techniques such as scan and BIST(Built-In Self-Test). However the test area overhead is too expensive to guarantee diverse test link configurations. In this paper, at first we introduce a new flag based Wrapped Core Linking Module(WCLM) that enables systematic integration of IEEE 1149.1 TAP'd cores and P1500 wrapped cores. Then a simple test control technique, which can interconnect internal scan chains of different cores, is described with requiring least amount of area overhead compared with other state-of-art techniques. The design preserves compatibility with standards and scalability for hierarchical access.

Reduced Pin Count Test Techniques using IEEE Std. 1149.7 (IEEE 1149.7 표준 테스트 인터페이스를 사용한 핀 수 절감 테스트 기술)

  • Lim, Myunghoon;Kim, Dooyoung;Mun, Changmin;Park, Sungju
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.9
    • /
    • pp.60-67
    • /
    • 2013
  • Test cost reduction is necessary to test a complex System-on-a-Chip(SoC) which adopts various Intellectual Properties (IP). In this paper, test architecture with low pin count which is able to IP-based SoC test, using IEEE Std. 1149.7 and IEEE Std. 1500, is proposed. IEEE Std. 1500 provides independent access mechanism for each IP in IP-based SoC test. In this paper, just two test pins are required by composing that these independent access mechanism can be controlled by IEEE Std. 1149.7. The number of Chips which are tested at the same time is increased by reducing required test pin count at wafer and package level test, and consequently the overall manufacturing test cost will be reduced significantly.

Step-wised Out-test Mechanism for Underwater Acoustic Networks (수중 음파 통신 네트워크를 위한 Step-wised Out-test 메커니즘)

  • Ibragimov, Mukhridinkhon;Yun, Nam-Yeol;Shin, Soo-Young;Namgung, Jung-Il;Kim, Changhwa;Park, Soo-Hyun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.4
    • /
    • pp.106-114
    • /
    • 2015
  • Despite a series of various developments in underwater acoustic sensor networks, there are still occasions of loss of connection over the network. Because sufficient amounts of drawbacks causing disconnections posed particularly in the middle of connection over the network emerge in the ocean environment, there is a need of new testing mechanism for underwater acoustic networks. In this paper, we proposed to investigate the most vital parts of the network deployment whether they function well in order, without any failure so as to identify where exactly communication process problems and failures are. We introduce step-wised out-test mechanism for UWASNS and accomplished the mechanism by implementing experiments and rigorously checked all the underwater devices utilizing out-test function. Experimental results and out-test function are evinced by implementing, in order to explain our system and conclude with possible future improvements.

A Study of Core Test Scheduling for SOC (코아 테스트 스케듈링에 관한 연구)

  • 최동춘;민형복;김인수
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10a
    • /
    • pp.208-210
    • /
    • 2003
  • 본 논문은 SOC 내에 존재하는 코아들을 테스트하는 과정에서 개별 코아들의 테스트 조건을 기반으로 한 스케듈링을 통해 최적의 Test ing time을 구하는 연구이다. SOC 내에 존재하는 코아들은 주어지는 TAM(Test Access Mechanism) Width에 따라 각코아들의 Width가 달라지고, 최대 Width에서 최소 Width(1)까지 각 Width 별로 Testing time을 계산할 수 있다. 코아들의 각 Width 별 Testing time을 기존의 Rectangle Packing Algorithm을 수정, 보완하여 효율적으로 구성한 수정 Rectangle Packing Algorithm에 적응하여 최적의 Testing time을 구하는 것이 본 논문의 목적이다.

  • PDF

An Efficient Wrapper Design for SOC Testing (SOC 테스트를 위한 Wrapper 설계 기법)

  • Choi, Sun-Hwa;Kim, Moon-Joon;Chang, Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.3
    • /
    • pp.65-70
    • /
    • 2004
  • The SOC(System on Chip) testing has required the core re-use methodology and the efficiency of test method because of increase of its cost. The goal of SOC testing is to minimize the testing time, area overhead, and power consumption during testing. Prior research has concentrated on only one aspect of the test core wrapper design problem at a test time. Our research is concentrated on optimization of test time and area overhead for the core test wrapper, which is one of the important elements for SOC test architecture. In this paper, we propose an efficient wrapper design algorithm that improves on earlier approaches by also reducing the TAM(Test Access Mechanism) width required to achieve these lower testing times.

Design of an Automated Testing Tool to Detect Dynamic Memory Access Errors in C Programs (C언어 기반 프로그램의 동적 메모리 접근 오류 테스트 자동화 도구 설계)

  • Cho, Dae-Wan;Oh, Seung-Uk;Kim, Hyeon-Soo
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.8
    • /
    • pp.708-720
    • /
    • 2007
  • Memory access errors are frequently occurred in computer programs written in C programming language [1,2]. Accordingly, a number of research works have suggested a wide variety of methods to detect such errors automatically. However, they have one or more of the following problems: inability to detect all memory errors, changing the memory allocation mechanism, and excessive performance overhead. To cope with these problems, in this paper we suggest a new and automated tool to detect dynamic memory access errors in C programs.

NoC-Based SoC Test Scheduling Using Ant Colony Optimization

  • Ahn, Jin-Ho;Kang, Sung-Ho
    • ETRI Journal
    • /
    • v.30 no.1
    • /
    • pp.129-140
    • /
    • 2008
  • In this paper, we propose a novel ant colony optimization (ACO)-based test scheduling method for testing network-on-chip (NoC)-based systems-on-chip (SoCs), on the assumption that the test platform, including specific methods and configurations such as test packet routing, generation, and absorption, is installed. The ACO metaheuristic model, inspired by the ant's foraging behavior, can autonomously find better results by exploring more solution space. The proposed method efficiently combines the rectangle packing method with ACO and improves the scheduling results by dynamically choosing the test-access-mechanism widths for cores and changing the testing orders. The power dissipation and variable test clock mode are also considered. Experimental results using ITC'02 benchmark circuits show that the proposed algorithm can efficiently reduce overall test time. Moreover, the computation time of the algorithm is less than a few seconds in most cases.

  • PDF

A Design and Implementation of Web-based Test System using Computer-adaptive Test Algorithm (컴퓨터 적응형 알고리즘을 이용한 웹기반 시험 시스템 설계 및 구축)

  • Cho, Sung Ho
    • The Journal of Korean Association of Computer Education
    • /
    • v.7 no.6
    • /
    • pp.69-76
    • /
    • 2004
  • E-learning is the application of e-business technology and services to teaching and learning. It use of new multimedia technologies and Internet to improved the quality of learning by facilitating access to remote resources and services. In this paper, we show a web-based test system, which is carefully designed and implemented based on the real TOEFL CBT. The system consists of a contents delivery mechanism, computer-adaptive test algorithm, and review engine. In this papepr, we describe design and implementing issues of web-based test systems.

  • PDF