• Title/Summary/Keyword: TSOP

Search Result 11, Processing Time 0.024 seconds

Numerical Analysis for Thermal-deformation Improvement in TSOP(Thin Small Outline Package) by Anti-deflection Adhesives (TSOP(Thin Small Outline Package) 열변형 개선을 위한 전산모사 분석)

  • Kim, Sang-Woo;Lee, Hai-Joong;Lee, Hyo-Soo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.3
    • /
    • pp.31-35
    • /
    • 2013
  • TSOP(Thin Small Outline Package) is the IC package using lead frame, which is the type of low cost package for white electronics, auto mobile, desktop PC, and so on. Its performance is not excellent compared to BGA or flip-chip CSP, but it has been used mostly because of low price of TSOP package. However, it has been issued in TSOP package that thermal deflection of lead frame occurs frequently during molding process and Au wire between semiconductor die and pad is debonded. It has been required to solve this problem through substituting materials with low CTE and improving structure of lead frame. We focused on developing the lead frame structure having thermal stability, which was carried out by numerical analysis in this study. Thermal deflection of lead frame in TSOP package was simulated with positions of anti-deflection adhesives, which was ranging 198 um~366 um from semiconductor die. It was definitely understood that thermal deflection of TSOP package with anti-deflection adhesives was improved as 30.738 um in the case of inside(198 um), which was compared to that of the conventional TSOP package. This result is caused by that the anti-deflection adhesives is contributed to restrict thermal expansion of lead frame. Therefore, it is expected that the anti-deflection adhesives can be applied to lead frame packages and enhance their thermal deflection without any change of substitutive materials with low CTE.

A Study on the Life Prediction and Quality Improvement of Joint in IC Package (플라스틱 IC 패키지 접합부의 수명예측 및 품질향상에 관한 연구)

  • 신영의;김종민
    • Journal of Welding and Joining
    • /
    • v.17 no.1
    • /
    • pp.124-132
    • /
    • 1999
  • Thermal fatigue strength of the solder joints is the most critical issue for TSOP(Thin Small Outline Package) because the leads of this package are extremely short and thermal deformation cannot be absorbed by the deflection of the lead. And the TSOP body can be subject to early fatigue failures in thermal cycle environments. This paper was discussed distribution of thermal stresses at near the joint between silicon chip and die pad and investigated their reliability of solder joints of TSOP with 42 alloy clad lead frame on printed circuit board through FEM and 3 different thermal cycling tests. It has been found that the stress concentration around the encapsulated edge structure for internal crack between the silicon chip and Cu alloy die pad. And using 42 alloy clad, The reliability of TSOP body was improved. In case of using 42 alloy clad die pad(t=0.03mm). $$\sigma$_{VMmax}$ is 69Mpa. It is showed that 15% improvement of the strength in the TSOP body in comparison with using Cu alloy die pad $($\sigma$_{VMmax}$=81MPa). In solder joint of TSOP, the maximum equivalent plastic strain and Von Mises stress concentrate on the heel of solder fillet and crack was initiated in it's region and propagated through the interface between lead and solder. Finally, the modified Manson-Coffin equation and relationship of the ratio of $N_{f}$ to nest(η) and cumulative fracture probability(f) with respect to the deviations of the 50% fracture probability life $(N_{f 50%})$ were achieved.

  • PDF

Analysis of Power Noises by Chip-to-Chip Power Coupling on High-Speed Memory Modules (고속 메모리 모듈에서 칩 간의 파워커플링에 의한 파워 잠음 분석)

  • 위재경
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.10
    • /
    • pp.31-39
    • /
    • 2004
  • This paper illustrates the noise characteristics under chip's core operations according to types of packages and modules for DDR DRAM For analyzing this, the impedance profiles and power noises are analyzed with DRAM chips having commercial TSOP package and commercial FBGA package on TSOP-based DIMM and FBGA-based DIMH In controversy with common concepts, we find that the noise-isolation characteristics of FBGA package are more weak and sensitive on transferred noises than those of the TSOP package. In addition, the simulated results show that the decoupling capacitor locations of modules are more important to control the self and transfer noise characteristics than the lead inductance of the packages. Therefore, satisfying the target spec of the noise suppression and isolation can be achieved through the design of power distribution systems only with considering not only the package types but also the whole module system.

Quality improvement on joints of electronic materials and its reliability by Fe-Ni alloy clad lead frame (Fe-Ni 합금 클래드 리드 프레임을 이용한 전자 재료 접합부의 품질향상과 그 신뢰성)

  • 신영의;최인수;안승호
    • Journal of Welding and Joining
    • /
    • v.13 no.2
    • /
    • pp.82-95
    • /
    • 1995
  • This paper discusses distribution of thermal stress, strain at near the joint and investigates the reliability of solder joints of electronic devices on a printed circuit board. As Electronic devices are composed of different materials, thermal stresses generate at near the interface, such as solder joints and interface between lC device and lead frame pad due to the differences of thermal expansion coefficients, As results of thermal stress, strain, micro crack often occurs thermal fatigue fracture at the interface of different materials, The initiation and propagation of micro crack depend on the environmental conditions, such as storage temperature and thermal cycling. Finally, this paper experimentally shows a way to suppress micro cracks by using Fe-Ni alloy clad lead frame, and investigates crack and thermal fatigue fracture of TSOP(Thin small outline package) type on printed circuit board.

  • PDF

A study on electrical characteristics fo high speed bottom leaded plastic(BLP) package (고속 bottom leaded plastic(BLP) package의 전기적 특성에 관한 연구)

  • 신명진;유영갑
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.4
    • /
    • pp.61-70
    • /
    • 1998
  • The electrical performance of a package is extremely important for high speed digital system operations. CSP(chip scale package) is known to have better electrical performance than the convnetional packages. In this paper, the electrical performance of the BLP(bottom leaded plastic) package, a kind of CSP, has been alayzed by both simulation and real measurement. The electrical perfdormance of a BLP was compared with that of the conventioanl TSOP(thin small outline package). The leadinductanceand lead capacitance were used for the comparison purposes. The new BLP design provides much better electrical performance that TSOP package. It has about 40% favorable parameter values.

  • PDF

${\mu}$BGA and ${\mu}$Spring Packages for Rambus DRAM Applications and Their Electrical Characteristics (Rambus DRAM실장용 ${mu}!$BGA (Ball Grid Array) 및 ${mu}!$Spring 패키지와 전기적 특성)

  • Kim, Jin-Seong;Yu, Yeong-Gap
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.4
    • /
    • pp.243-250
    • /
    • 2001
  • This paper presents the structure of a $\mu$Spring package, its fabrication process and an analysis of its electrical characteristics compared to that of a $\mu$BGA. It was found that both $\mu$BGA and $\mu$Spring packages provide with outstanding high speed signal transmission characteristics due to their lower inductance of package interconnection lines, smaller than half of inductance of TSOP package lines. Even the worst case substrate trace of a Rambus DRAM $\mu$Spring package yields the line inductance of 2.9nH, which provides with 25% margin compared to the Rambus DRAM specification of 4nH. The fabrication cost of $\mu$Spring package is lower than that of $\mu$BGA by 50%, passes 1000 thermal cycles, meets JEDEC Level 1 specification whereas $\mu$BGA does not, and thereby yields high reliability and strong competing power.

  • PDF

Magnetic and Thermal Evaluation of a Magnetic Tunneling Junction Current Sensor Package

  • Rhod, Eduardo;Peter, Celso;Hasenkamp, Willyan;Grion, Agner
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.4
    • /
    • pp.49-55
    • /
    • 2016
  • Nowadays there are magnetic sensors in a wide variety of equipment such as computers, cars, airplanes, medical and industrial instruments. In many of these applications the magnetic sensors offer safe and non-invasive means of detection and are more reliable than other technologies. The electric current in a conductor generates a magnetic field detected by this type of sensor. This work aims to define a package dedicated to an electrical current sensor using a MTJ (Magnetic Tunnel Junction) as a sensing device. Four different proposals of packaging, three variations of the chip on board (CoB) package type and one variation of the thin small outline package (TSOP) were analyzed by COMSOL modeling software by simulating a brad range of current injection. The results obtained from the thermal and magnetic analysis has proven to be very important for package improvements, specially for heat dissipation performance.

A Study on the Thermal Fatigue of Solder Joint by Package Types (패키지 유형에 따른 솔더접합부의 열피로에 관한 연구)

  • 김경섭;신영의
    • Journal of Welding and Joining
    • /
    • v.17 no.6
    • /
    • pp.78-83
    • /
    • 1999
  • Solder joint is the weakest part which connects in mechanically and electronically between package body and PCB(Printed Circuit Board). Recently, the reliability of solder joint become the most critical issue in surface mounted technology. The solder joint interconnection between plastic package and PCB is susceptible to shear stress during thermal storage due to the mismatch in coefficient of thermal expansion between plastic package and PCB. A general computational approach to determine the effect of solder joint shape on the fatigue life presented. The thermal fatigue life was estimated from the engelmaier equation which was obtained from the temperature cycling loading($-65^{\circ}C$ to $150^{\circ}C$). As result of the simulation, TSOP structure has the shortest thermal fatigue life and the same structure Copper lead has 2.5 times as much fatigue life as Alloy 42 lead. In BGA structure, fatigue life time extended 80 times when underfill material exists.

  • PDF

μBGA and μSpring packages for rambus DRAM applications and their electrical characteristics (Rambus DRAM 실장용 μBGA (Ball Grid Array) 및 μSpring 패키지와 전기적 특성)

  • Kim, Jin Seong;Yu, Yeong Gap
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.4
    • /
    • pp.1-1
    • /
    • 2001
  • 본 논문에서는 μspring 패키지의 구조와 제조공정을 소개하고, 전기적 특성을 μBGA와 비교 분석한 결과를 제시하였다. μBGA에서와 같이 μSpring 패키지의 연결선 인덕턴스 값은 기존의 TSOP 패키지의 반 이하로서 월등한 고속 신호 전달 특성을 제공하게 된다. 또한 μSpring CSP 패키지의 경우 가장 열악한 substrate trace를 가진 핀에서도 2.9nH로 평가되어, Rambus DRAM module의 인덕턴스 규격 상한 값 4nH에 비하여, 약 25% 정도의 margin을 제공한다. μSpring CSP패키지는 μBGA의 약 50%의 제조 비용으로서 μBGA가 만족시키지 못하는 JEDEC Level 1 규격을 충족시킬 뿐만 아니라, thermal cycle 1000회를 통과하는 높은 신뢰성을 제공하여 강력한 경쟁력을 가진다.

A prediction of the thermal fatigue life of solder joint in IC package for surface mount (표면실장용 IC 패키지 솔더접합부의 열피로 수명 예측)

  • 윤준호;신영의
    • Journal of Welding and Joining
    • /
    • v.16 no.4
    • /
    • pp.92-97
    • /
    • 1998
  • Because of the low melting temperature of solder, each temperature cycle initiates an irrecoverable creep deformation at the solder interconnection which connects the package body with the PCB. The crack starts and propagates from the position where the creep deformation is maximized. This work has tried to compare and analyze the thermal fatigue life of solder interconnection which is affected by the lead material, the size of die pad, chip thickness, and interface delamination of 48-Pin TSOP under the temperature cycle ($0^{\circ}C$~1$25^{\circ}C$). The crack initiation position and thermal fatigue life which are calculated by using FEA method are well matched with the results of experiments. The thermal Fatigue life of copper lead frame is extended around 3.6 times longer than that of alloy 42 lead frame. It is maximized when the chip size is matched with the length of the lead. It tends to be extended as the thickness of chip got thinner. As the interfacial delamination between die pad and EMC is increased, the thermal fatigue life tends to decrease in the beginning of delamination, and increase after the delamination grew after 45% of the length of die pad.

  • PDF