• Title/Summary/Keyword: TGF-beta signaling

Search Result 114, Processing Time 0.032 seconds

Protein Arginine Methyltransferase 1 Methylates Smurf2

  • Cha, Boksik;Park, Yaerin;Hwang, Byul Nim;Kim, So-young;Jho, Eek-hoon
    • Molecules and Cells
    • /
    • v.38 no.8
    • /
    • pp.723-728
    • /
    • 2015
  • Smurf2, a member of the HECT domain E3 ligase family, is well known for its role as a negative regulator of TGF-${\beta}$ signaling by targeting Smads and TGF-${\beta}$ receptor. However, the regulatory mechanism of Smurf2 has not been elucidated. Arginine methylation is a type of post-translational modification that produces monomethylated or dimethylated arginine residues. In this report, we demonstrated methylation of Smurf2 by PRMT1. In vitro methylation assay showed that Smurf2, not Smurf1, was methylated by PRMT1. Among the type I PRMT family, only PRMT1 showed activity for Smurf2. Transiently expressed Smurf2 was methylated by PRMT1, indicating Smurf2 is a novel substrate of PRMT1. Using deletion constructs, methylation sites were shown to be located within amino acid region 224-298 of Smurf2. In vitro methylation assay following point mutation of putative methylation sites confirmed the presence of Arg232, Arg234, Arg237, and Arg239. Knockdown of PRMT1 resulted in increased Smurf2 expression as well as inhibition of TGF-${\beta}$-mediated reporter activity. Although it is unclear whether or not increased Smurf2 expression can be directly attributed to lack of methylation of arginine residues, our results suggest that methylation by PRMT1 may regulate Smurf2 stability and control TGF-${\beta}$ signaling.

Identification of MFGE8 in mesenchymal stem cell secretome as an anti-fibrotic factor in liver fibrosis

  • Jang, Yu Jin;An, Su Yeon;Kim, Jong-Hoon
    • BMB Reports
    • /
    • v.50 no.2
    • /
    • pp.58-59
    • /
    • 2017
  • The beneficial paracrine roles of mesenchymal stem cells (MSCs) in tissue repair have potential in therapeutic strategies against various diseases. However, the key therapeutic factors secreted from MSCs and their exact molecular mechanisms of action remain unclear. In this study, the cell-free secretome of umbilical cord-derived MSCs showed significant anti-fibrotic activity in the mouse models of liver fibrosis. The involved action mechanism was the regulation of hepatic stellate cell activation by direct inhibition of the $TGF{\beta}$/Smad-signaling. Antagonizing the milk fat globule-EGF factor 8 (MFGE8) activity blocked the anti-fibrotic effects of the MSC secretome in vitro and in vivo. Moreover, MFGE8 was secreted by MSCs from the umbilical cord as well as other tissues, including teeth and bone marrow. Administration of recombinant MFGE8 protein alone had a significant anti-fibrotic effect in two different models of liver fibrosis. Additionally, MFGE8 downregulated $TGF{\beta}$ type I receptor expression by binding to ${\alpha}v{\beta}3$ integrin on HSCs. These findings revealed the potential role of MFGE8 in modulating $TGF{\beta}$-signaling. Thus, MFGE8 could serve as a novel therapeutic agent for liver fibrosis.

Anti-Fibrotic Effects by Moringa Root Extract in Rat Kidney Fibroblast (모링가 뿌리 추출물에 대한 신장섬유화 억제 효과)

  • Park, Su-Hyun;Chang, Young-Chae
    • Journal of Life Science
    • /
    • v.22 no.10
    • /
    • pp.1371-1377
    • /
    • 2012
  • Fibrosis in kidney by internal and external factors causes progressive loss of renal function. Renal fibrosis is the inevitable consequence of an excessive accumulation of the extracellular matrix. TGF-${\beta}$ plays an important role in the process of renal fibrosis and stimulates the synthesis of profibrotic factors, including collagens, fibronectin, and plasminogen activator inhibitor (PAI-1). We examined the effect of Moringa oleifera Lam (moringa) extracts in a rat kidney fibrosis model. We found that moringa root extract suppresses protein expression/mRNA levels of Type I collagen, fibronectin, and PAI-1 induced by TGF-${\beta}$ in renal fibroblasts. Moringa root extract selectively inhibited phosphorylation of TGF-${\beta}$-induced $T{\beta}RII$ and the downstream signaling pathway (e.g., Smad4), and phospho-ERK, but not JNK, p38, or PI3K/AKT. These results suggest that moringa root extract can act against TGF-${\beta}$-induced renal fibrosis in rat kidney fibroblast cells by a mechanism related to its antifibrotic activity, which regulates expression of fibronectin, Type I collagen, and PAI-1 through $T{\beta}RII$-Smad2/3-Smad4 and ERK. Therefore, moringa root extract is an effective substance for fibrosis therapy and provides a new therapeutic strategy for diseases associated with elevated profibrotic factor synthesis.

Role of HOXA Gene in Human Endometrial Decidualization (인간 자궁내막의 탈락막화에서 HOXA10 유전자의 역할)

  • Lee, Chang-Se;Park, Dong-Wook;Park, Chan-Woo;Kim, Tae-Jin
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.37 no.3
    • /
    • pp.207-216
    • /
    • 2010
  • Objective: This study was performed to clarify the role of HomeoboxA (HOXA) and its related signaling molecules in the decidualization of primary cultured endometrial cells. Methods: Human endometrial tissues were obtained by curettage of hysterectomy specimens from patients with conditions other than endometrial diseases. Tissues were minced and digested with Trypsin-EDTA for 20 min, $37^{\circ}C$. Cells were cultured with DMEM/F12 medium in $37^{\circ}C$, 5% $CO_2$ incubator for 24 hrs. Cells were treated with HOXA10 siRNA and added transforming growth factor (TGF)-${\beta}1$ (10 ng/mL) for 48 hrs to induces decidualization in vitro. Reverse transcription polymerase chain reaction analysis was accomplished to observe the expression of HOXA10, prolactin, cyclooxygenase (COX)-2, peroxisome proliferatoractivated receptor (PPAR)-$\gamma$, and wingless-type MMTV integration site family (Wnt). Results: HOXA10 expression was increased (1.8 fold vs. non-treated control) in TGF-${\beta}1$ treated cells. Decidualization marker, prolactin, was significantly increased in TGF-${\beta}1$ treated cells compared with HOXA10 siRNA treated cells. Endometrial cell differentiation marker, COX-2 was down-regulated by HOXA10 siRNA even if cells were treated with TGF-${\beta}1$. Wnt4 was down-regulated by treated with HOXA10 siRNA, this expression patters was not changed by TGF-${\beta}1$. Expression of PPAR-$\gamma$ was down regulated by TGF-${\beta}1$ in regardless of HOXA10 siRNA treatment. Conclusion: TGF-${\beta}1$ which is induced by progesterone in endometrial epithelial cells may induces stromal cell decidualization via HOXA10 and Wnt signaling cascade.

4-O-Methylhonokiol Protects HaCaT Cells from TGF-β1-Induced Cell Cycle Arrest by Regulating Canonical and Non-Canonical Pathways of TGF-β Signaling

  • Kim, Sang-Cheol;Kang, Jung-Il;Hyun, Jin-Won;Kang, Ji-Hoon;Koh, Young-Sang;Kim, Young-Heui;Kim, Ki-Ho;Ko, Ji-Hee;Yoo, Eun-Sook;Kang, Hee-Kyoung
    • Biomolecules & Therapeutics
    • /
    • v.25 no.4
    • /
    • pp.417-426
    • /
    • 2017
  • 4-O-methylhonokiol, a neolignan compound from Magnolia Officinalis, has been reported to have various biological activities including hair growth promoting effect. However, although transforming growth factor-${\beta}$ (TGF-${\beta}$) signal pathway has an essential role in the regression induction of hair growth, the effect of 4-O-methylhonokiol on the TGF-${\beta}$ signal pathway has not yet been elucidated. We thus examined the effect of 4-O-methylhonokiol on TGF-${\beta}$-induced canonical and noncanonical pathways in HaCaT human keratinocytes. When HaCaT cells were pretreated with 4-O-methylhonokiol, TGF-${\beta}1$-induced G1/G0 phase arrest and TGF-${\beta}1$-induced p21 expression were decreased. Moreover, 4-O-methylhonokiol inhibited nuclear translocation of Smad2/3, Smad4 and Sp1 in TGF-${\beta}1$-induced canonical pathway. We observed that ERK phosphorylation by TGF-${\beta}1$ was significantly attenuated by treatment with 4-O-methylhonokiol. 4-O-methylhonokiol inhibited TGF-${\beta}1$-induced reactive oxygen species (ROS) production and reduced the increase of NADPH oxidase 4 (NOX4) mRNA level in TGF-${\beta}1$-induced noncanonical pathway. These results indicate that 4-O-methylhonokiol could inhibit TGF-${\beta}1$-induced cell cycle arrest through inhibition of canonical and noncanonical pathways in human keratinocyte HaCaT cell and that 4-O-methylhonokiol might have protective action on TGF-${\beta}1$-induced cell cycle arrest.

4-Hexylresorcinol induced angiogenesis potential in human endothelial cells

  • Kim, Min-Keun;Kim, Seong-Gon;Lee, Suk Keun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.42
    • /
    • pp.23.1-23.11
    • /
    • 2020
  • Background: 4-Hexylresorcinol (4HR) is able to increase angiogenesis. However, its molecular mechanism in the human endothelial cells has not been clarified. Methods: As endothelial cells are important in angiogenesis, we treated the human umbilical vein endothelial cells (HUVECs) with 4HR and investigated protein expressional changes by immunoprecipitation high-performance liquid chromatography (IP-HPLC) using 96 antisera. Results: Here, we found that 4HR upregulated transforming growth factor-β (TGF-β)/SMAD/vascular endothelial growth factor (VEGF) signaling, RAF-B/ERK and p38 signaling, and M2 macrophage polarization pathways. 4HR also increased expression of caspases and subsequent cellular apoptosis. Mechanistically, 4HR increased TGF-β1 production and subsequent activation of SMADs/VEGFs, RAF-B/ERK and p38 signaling, and M2 macrophage polarization. Conclusion: Collectively, 4HR activates TGF-β/SMAD/VEGF signaling in endothelial cells and induced vascular regeneration and remodeling for wound healing.

Ellagic Acid Exerts Anti-proliferation Effects via Modulation of Tgf-Β/Smad3 Signaling in MCF-7 Breast Cancer Cells

  • Zhang, Tao;Chen, Hong-Sheng;Wang, Li-Feng;Bai, Ming-Han;Wang, Yi-Chong;Jiang, Xiao-Feng;Liu, Ming
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.1
    • /
    • pp.273-276
    • /
    • 2014
  • Ellagic acid has been shown to inhibit tumor cell growth. However, the underlying molecular mechanisms remain elusive. In this study, our aim was to investigate whether ellagic acid inhibits the proliferation of MCF-7 human breast cancer cells via regulation of the TGF-${\beta}$/Smad3 signaling pathway. MCF-7 breast cancer cells were transfected with pEGFP-C3 or pEGFP-C3/Smad3 plasmids, and treated with ellagic acid alone or in combination with SIS3, a specific inhibitor of Smad3 phosphorylation. Cell proliferation was assessed by MTT assay and the cell cycle was detected by flow cytometry. Moreover, gene expression was detected by RT-PCR, real-time PCR and Western blot analysis. The MTT assay showed that SIS3 attenuated the inhibitory activity of ellagic acid on the proliferation of MCF-7 cells. Flow cytometry revealed that ellagic acid induced G0/G1 cell cycle arrest which was mitigated by SIS3. Moreover, SIS3 reversed the effects of ellagic acid on the expression of downstream targets of the TGF-${\beta}$/Smad3 pathway. In conclusion, ellagic acid leads to decreased phosphorylation of RB proteins mainly through modulation of the TGF-${\beta}$/Smad3 pathway, and thereby inhibits the proliferation of MCF-7 breast cancer cells.

THE CLINICAL SIGNIFICANCE OF THE EXPRESSION OF TGF-${\beta}1$ AND MMP-2 RELATED TO THE REGIONAL LYMPH NODE METASTASIS IN THE ORAL SQUAMOUS CELL CARCINOMA (구강 편평 상피 암종에서 TGF-${\beta}1$과 MMP-2의 발현과 경부 임파절 전이 간의 상관 관계에 관한 연구)

  • Kim, Jwa-Young;Rotaru, Horatiu;Kim, Seong-Gon
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.33 no.3
    • /
    • pp.199-203
    • /
    • 2007
  • Several matrix metalloproteinases (MMPs) have been shown to play an important role in the invasion and metastasis of oral squamous cell carcinoma (OSCC). The members of the TGF-$\beta$ signaling pathway are being considered as predictive biomarkers for progressive tumorigenesis and molecular targets for the prevention and the treatment of cancer and metastasis. The aim of the present study was to find the clinical significance of the expression of TGF-${\beta}1$ and MMP-2 related to the regional lymph node metastasis in OSCC. This study included 76 cases of primary OSCC, of which 42 cases showed regional lymph node metastases. Immunohistochemistry was used for the localization of protein. The relation between the expression of each protein and clinical variables was statistically evaluated. In results, the expression of TGF-${\beta}1$ both main mass with lymph node metastasis and without lymph node metastasis was found not to be statistically significant (p>0.05). The expression of MMP-2 was found to be statistically significant related to regional lymph node metastasis (p<0.05). When compared the expression in the metastatic lymph node, TGF-${\beta}1$ was significantly highly expressed than MMP-2 (p<0.05). In conclusion, the expression of MMP-2 was significantly elevated in patients with lymph node metastasis as compared to the patients without lymph node metastasis, which could be useful in predicting the risk of lymph node metastasis in OSCC.

Transforming growth factor β1 enhances adhesion of endometrial cells to mesothelium by regulating integrin expression

  • Choi, Hee-Jung;Park, Mi-Ju;Kim, Bo-Sung;Choi, Hee-Jin;Joo, Bosun;Lee, Kyu Sup;Choi, Jung-Hye;Chung, Tae-Wook;Ha, Ki-Tae
    • BMB Reports
    • /
    • v.50 no.8
    • /
    • pp.429-434
    • /
    • 2017
  • Endometriosis is the abnormal growth of endometrial cells outside the uterus, causing pelvic pain and infertility. Furthermore, adhesion of endometrial tissue fragments to pelvic mesothelium is required for the initial step of endometriosis formation outside uterus. $TGF-{\beta}1$ and adhesion molecules importantly function for adhesion of endometrial tissue fragments to mesothelium outside uterus. However, the function of $TGF-{\beta}1$ on the regulation of adhesion molecule expression for adhesion of endometrial tissue fragments to mesothelium has not been fully elucidated. Interestingly, transforming growth factor ${\beta}1$ ($TGF-{\beta}1$) expression was higher in endometriotic epithelial cells than in normal endometrial cells. The adhesion efficiency of endometriotic epithelial cells to mesothelial cells was also higher than that of normal endometrial cells. Moreover, $TGF-{\beta}1$ directly induced the adhesion of endometrial cells to mesothelial cells through the regulation of integrin of ${\alpha}V$, ${\alpha}6$, ${\beta}1$, and ${\beta}4$ via the activation of the $TGF-{\beta}1/TGF-{\beta}RI/Smad2$ signaling pathway. Conversely, the adhesion of $TGF-{\beta}1-stimulated$ endometrial cells to mesothelial cells was clearly reduced following treatment with neutralizing antibodies against specific $TGF-{\beta}1-mediated$ integrins ${\alpha}V$, ${\beta}1$, and ${\beta}4$ on the endometrial cell membrane. Taken together, these results suggest that $TGF-{\beta}1$ may act to promote the initiation of endometriosis by enhancing integrin-mediated cell-cell adhesion.

Expression Patterns of $TGF-{\beta}1,\;TGF-{\beta}$ Receptor Type I, II and Substrate Proteins Smad 2, 3, 4 and 7 in Bovine Oocytes and Embryos

  • Chung, Hak-Jae;Kim, Bong-Ki;Kim, Jong-Mu;Lee, Hyun-Gi;Han, Joo-Hee;Kim, Nam-Hyung;Park, Jin-Ki;Seong, Hwan-Hoo;Yang, Boh-Suk;Chang, Won-Kyong;Ko, Yeoung-Gyu
    • Reproductive and Developmental Biology
    • /
    • v.30 no.4
    • /
    • pp.271-277
    • /
    • 2006
  • Transforming growth $factor-{\beta}\;(TGF-{\beta})$ has been shown to have a positive effect on in vitro fertilization (IVF) and has been reported to stimulate meiosis at follicular level in variety of species. The study was designed to determine the expression patterns of $TGF-{\beta}1,\;TGF-{\beta}$ receptors type I, II and Smads gene in bovine oocytes and embryos. $TGF-{\beta}1$ and their receptors were observed in the unfertilized oocytes. $TGF-{\beta}1$ and type II receptor were not expressed at the blastocyst stage, however, only type I receptor was exclusively observed at the same stage. The blastocyst stage, in particular, showed high levels of mRNA expression patterns containing a $TGF-{\beta}1$ type I receptor. The mRNA expression pattern of Smad 2 at all stages of embryonic development was similar in all respect with $TGF-{\beta}1$ type I receptor. On the contrary, Smad 3 and 4 were expressed with high and low level mRNA at the blastocyst stage. In conclusion. it is suggested that $TGF-{\beta}1$ signaling may be regarded as an important entity during the preimplantation embryo development.