DOI QR코드

DOI QR Code

Protein Arginine Methyltransferase 1 Methylates Smurf2

  • Cha, Boksik (Department of Life Science, University of Seoul) ;
  • Park, Yaerin (Department of Life Science, University of Seoul) ;
  • Hwang, Byul Nim (Department of Life Science, University of Seoul) ;
  • Kim, So-young (Department of Life Science, University of Seoul) ;
  • Jho, Eek-hoon (Department of Life Science, University of Seoul)
  • Received : 2015.04.30
  • Accepted : 2015.05.14
  • Published : 2015.08.31

Abstract

Smurf2, a member of the HECT domain E3 ligase family, is well known for its role as a negative regulator of TGF-${\beta}$ signaling by targeting Smads and TGF-${\beta}$ receptor. However, the regulatory mechanism of Smurf2 has not been elucidated. Arginine methylation is a type of post-translational modification that produces monomethylated or dimethylated arginine residues. In this report, we demonstrated methylation of Smurf2 by PRMT1. In vitro methylation assay showed that Smurf2, not Smurf1, was methylated by PRMT1. Among the type I PRMT family, only PRMT1 showed activity for Smurf2. Transiently expressed Smurf2 was methylated by PRMT1, indicating Smurf2 is a novel substrate of PRMT1. Using deletion constructs, methylation sites were shown to be located within amino acid region 224-298 of Smurf2. In vitro methylation assay following point mutation of putative methylation sites confirmed the presence of Arg232, Arg234, Arg237, and Arg239. Knockdown of PRMT1 resulted in increased Smurf2 expression as well as inhibition of TGF-${\beta}$-mediated reporter activity. Although it is unclear whether or not increased Smurf2 expression can be directly attributed to lack of methylation of arginine residues, our results suggest that methylation by PRMT1 may regulate Smurf2 stability and control TGF-${\beta}$ signaling.

Keywords

References

  1. Bedford, M.T. (2007). Arginine methylation at a glance. J. Cell Sci. 120, 4243-4246. https://doi.org/10.1242/jcs.019885
  2. Bedford, M.T., and Clarke, S.G. (2009). Protein arginine methylation in mammals: who, what, and why. Mol. Cell 33, 1-13. https://doi.org/10.1016/j.molcel.2008.12.013
  3. Bedford, M.T., Frankel, A., Yaffe, M.B., Clarke, S., Leder, P., and Richard, S. (2000). Arginine methylation inhibits the binding of proline-rich ligands to Src homology 3, but not WW, domains. J. Biol. Chem. 275, 16030-16036. https://doi.org/10.1074/jbc.M909368199
  4. Blank, M., Tang, Y., Yamashita, M., Burkett, S.S., Cheng, S.Y., and Zhang, Y.E. (2012). A tumor suppressor function of Smurf2 associated with controlling chromatin landscape and genome stability through RNF20. Nat. Med. 18, 227-234. https://doi.org/10.1038/nm.2596
  5. Boisvert, F.M., Chenard, C.A., and Richard, S. (2005). Protein interfaces in signaling regulated by arginine methylation. Sci. STKE 2005, re2.
  6. Cha, B., and Jho, E.H. (2012). Protein arginine methyltransferases (PRMTs) as therapeutic targets. Expert. Opin. Ther. Targets 16, 651-664. https://doi.org/10.1517/14728222.2012.688030
  7. Cha, B., Kim, W., Kim, Y.K., Hwang, B.N., Park, S.Y., Yoon, J.W., Park, W.S., Cho, J.W., Bedford, M.T., and Jho, E.H. (2011). Methylation by protein arginine methyltransferase 1 increases stability of Axin, a negative regulator of Wnt signaling. Oncogene 30, 2379-2389. https://doi.org/10.1038/onc.2010.610
  8. Deshaies, R.J., and Joazeiro, C.A. (2009). RING domain E3 ubiquitin ligases. Annu. Rev. Biochem. 78, 399-434. https://doi.org/10.1146/annurev.biochem.78.101807.093809
  9. Dupont, S., Inui, M., and Newfeld, S.J. (2012). Regulation of TGFbeta signal transduction by mono- and deubiquitylation of Smads. FEBS Lett. 586, 1913-1920. https://doi.org/10.1016/j.febslet.2012.03.037
  10. Fukuchi, M., Fukai, Y., Masuda, N., Miyazaki, T., Nakajima, M., Sohda, M., Manda, R., Tsukada, K., Kato, H., and Kuwano, H. (2002). High-level expression of the Smad ubiquitin ligase Smurf2 correlates with poor prognosis in patients with esophageal squamous cell carcinoma. Cancer Res. 62, 7162-7165.
  11. Goulet, I., Gauvin, G., Boisvenue, S., and Cote, J. (2007). Alternative splicing yields protein arginine methyltransferase 1 isoforms with distinct activity, substrate specificity, and subcellular localization. J. Biol. Chem. 282, 33009-33021. https://doi.org/10.1074/jbc.M704349200
  12. Han, G., Li, A.G., Liang, Y.Y., Owens, P., He, W., Lu, S., Yoshimatsu, Y., Wang, D., Ten Dijke, P., Lin, X., et al. (2006). Smad7-induced beta-catenin degradation alters epidermal appendage development. Dev. Cell 11, 301-312. https://doi.org/10.1016/j.devcel.2006.06.014
  13. Hershko, A., and Ciechanover, A. (1998). The ubiquitin system. Annu. Rev. Biochem. 67, 425-479. https://doi.org/10.1146/annurev.biochem.67.1.425
  14. Izzi, L., and Attisano, L. (2004). Regulation of the TGFbeta signalling pathway by ubiquitin-mediated degradation. Oncogene 23, 2071-2078. https://doi.org/10.1038/sj.onc.1207412
  15. Jin, C., Yang, Y.A., Anver, M.R., Morris, N., Wang, X., and Zhang, Y.E. (2009). Smad ubiquitination regulatory factor 2 promotes metastasis of breast cancer cells by enhancing migration and invasiveness. Cancer Res. 69, 735-740. https://doi.org/10.1158/0008-5472.CAN-08-1463
  16. Kim, S., and Jho, E.H. (2010). The protein stability of Axin, a negative regulator of Wnt signaling, is regulated by Smad ubiquitination regulatory factor 2 (Smurf2). J. Biol. Chem. 285, 36420-36426. https://doi.org/10.1074/jbc.M110.137471
  17. Lonn, P., Moren, A., Raja, E., Dahl, M., and Moustakas, A. (2009). Regulating the stability of TGFbeta receptors and Smads. Cell Res. 19, 21-35. https://doi.org/10.1038/cr.2008.308
  18. McBride, A.E., and Silver, P.A. (2001). State of the arg: protein methylation at arginine comes of age. Cell 106, 5-8. https://doi.org/10.1016/S0092-8674(01)00423-8
  19. McBride, A.E., Weiss, V.H., Kim, H.K., Hogle, J.M., and Silver, P.A. (2000). Analysis of the yeast arginine methyltransferase Hmt1p/Rmt1p and its in vivo function. Cofactor binding and substrate interactions. J. Biol. Chem. 275, 3128-3136. https://doi.org/10.1074/jbc.275.5.3128
  20. Mukhopadhyay, D., and Riezman, H. (2007). Proteasomeindependent functions of ubiquitin in endocytosis and signaling. Science 315, 201-205. https://doi.org/10.1126/science.1127085
  21. Osmundson, E.C., Ray, D., Moore, F.E., Gao, Q., Thomsen, G.H., and Kiyokawa, H. (2008). The HECT E3 ligase Smurf2 is required for Mad2-dependent spindle assembly checkpoint. J. Cell Biol. 183, 267-277. https://doi.org/10.1083/jcb.200801049
  22. Pawlak, M.R., Scherer, C.A., Chen, J., Roshon, M.J., and Ruley, H.E. (2000). Arginine N-methyltransferase 1 is required for early postimplantation mouse development, but cells deficient in the enzyme are viable. Mol. Cell Biol. 20, 4859-4869. https://doi.org/10.1128/MCB.20.13.4859-4869.2000
  23. Pickart, C.M. (2001). Mechanisms underlying ubiquitination. Annu Rev Biochem 70, 503-533. https://doi.org/10.1146/annurev.biochem.70.1.503
  24. Rotin, D., and Kumar, S. (2009). Physiological functions of the HECT family of ubiquitin ligases. Nat. Rev. Mol. Cell. Biol. 10, 398-409. https://doi.org/10.1038/nrm2690
  25. Tang, J., Frankel, A., Cook, R.J., Kim, S., Paik, W.K., Williams, K.R., Clarke, S., and Herschman, H.R. (2000). PRMT1 is the predominant type I protein arginine methyltransferase in mammalian cells. J. Biol. Chem. 275, 7723-7730. https://doi.org/10.1074/jbc.275.11.7723
  26. Tiscornia, G., Singer, O., Ikawa, M., and Verma, I.M. (2003). A general method for gene knockdown in mice by using lentiviral vectors expressing small interfering RNA. Proc. Natl. Acad. Sci. USA 100, 1844-1848. https://doi.org/10.1073/pnas.0437912100
  27. Xu, J., Wang, A.H., Oses-Prieto, J., Makhijani, K., Katsuno, Y., Pei, M., Yan, L., Zheng, Y.G., Burlingame, A., Bruckner, K., et al. (2013). Arginine Methylation Initiates BMP-Induced Smad Signaling. Mol. Cell 51, 5-19. https://doi.org/10.1016/j.molcel.2013.05.004
  28. Yamagata, K., Daitoku, H., Takahashi, Y., Namiki, K., Hisatake, K., Kako, K., Mukai, H., Kasuya, Y., and Fukamizu, A. (2008). Arginine methylation of FOXO transcription factors inhibits their phosphorylation by Akt. Mol. Cell 32, 221-231. https://doi.org/10.1016/j.molcel.2008.09.013
  29. Zhang, Y., Chang, C., Gehling, D.J., Hemmati-Brivanlou, A., and Derynck, R. (2001). Regulation of Smad degradation and activity by Smurf2, an E3 ubiquitin ligase. Proc. Natl. Acad. Sci. USA 98, 974-979. https://doi.org/10.1073/pnas.98.3.974

Cited by

  1. Protein arginine methyltransferase 1 (PRMT1) represses MHC II transcription in macrophages by methylating CIITA vol.7, 2017, https://doi.org/10.1038/srep40531
  2. Ubiquitin Regulation: The Histone Modifying Enzyme′s Story vol.7, pp.9, 2018, https://doi.org/10.3390/cells7090118
  3. Protein Arginine Methyltransferase PRMT1 Is Essential for Palatogenesis pp.1544-0591, 2018, https://doi.org/10.1177/0022034518785164
  4. The Post-translational Modifications of Smurf2 in TGF-β Signaling vol.7, pp.None, 2020, https://doi.org/10.3389/fmolb.2020.00128
  5. Protein arginine methyltransferase 1 mediates renal fibroblast activation and fibrogenesis through activation of Smad3 signaling vol.318, pp.2, 2015, https://doi.org/10.1152/ajprenal.00487.2019
  6. Ubiquitination-mediated degradation of SIRT1 by SMURF2 suppresses CRC cell proliferation and tumorigenesis vol.39, pp.22, 2015, https://doi.org/10.1038/s41388-020-1298-0
  7. Non-Histone Arginine Methylation by Protein Arginine Methyltransferases vol.21, pp.7, 2020, https://doi.org/10.2174/1389203721666200507091952
  8. Posttranslational Modifications of Smurfs: Emerging Regulation in Cancer vol.10, pp.None, 2015, https://doi.org/10.3389/fonc.2020.610663