Browse > Article
http://dx.doi.org/10.14348/molcells.2015.0113

Protein Arginine Methyltransferase 1 Methylates Smurf2  

Cha, Boksik (Department of Life Science, University of Seoul)
Park, Yaerin (Department of Life Science, University of Seoul)
Hwang, Byul Nim (Department of Life Science, University of Seoul)
Kim, So-young (Department of Life Science, University of Seoul)
Jho, Eek-hoon (Department of Life Science, University of Seoul)
Abstract
Smurf2, a member of the HECT domain E3 ligase family, is well known for its role as a negative regulator of TGF-${\beta}$ signaling by targeting Smads and TGF-${\beta}$ receptor. However, the regulatory mechanism of Smurf2 has not been elucidated. Arginine methylation is a type of post-translational modification that produces monomethylated or dimethylated arginine residues. In this report, we demonstrated methylation of Smurf2 by PRMT1. In vitro methylation assay showed that Smurf2, not Smurf1, was methylated by PRMT1. Among the type I PRMT family, only PRMT1 showed activity for Smurf2. Transiently expressed Smurf2 was methylated by PRMT1, indicating Smurf2 is a novel substrate of PRMT1. Using deletion constructs, methylation sites were shown to be located within amino acid region 224-298 of Smurf2. In vitro methylation assay following point mutation of putative methylation sites confirmed the presence of Arg232, Arg234, Arg237, and Arg239. Knockdown of PRMT1 resulted in increased Smurf2 expression as well as inhibition of TGF-${\beta}$-mediated reporter activity. Although it is unclear whether or not increased Smurf2 expression can be directly attributed to lack of methylation of arginine residues, our results suggest that methylation by PRMT1 may regulate Smurf2 stability and control TGF-${\beta}$ signaling.
Keywords
methylation; PRMT1; signal transduction; Smurf2; TGF-${\beta}$;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bedford, M.T. (2007). Arginine methylation at a glance. J. Cell Sci. 120, 4243-4246.   DOI   ScienceOn
2 Bedford, M.T., and Clarke, S.G. (2009). Protein arginine methylation in mammals: who, what, and why. Mol. Cell 33, 1-13.   DOI   ScienceOn
3 Bedford, M.T., Frankel, A., Yaffe, M.B., Clarke, S., Leder, P., and Richard, S. (2000). Arginine methylation inhibits the binding of proline-rich ligands to Src homology 3, but not WW, domains. J. Biol. Chem. 275, 16030-16036.   DOI   ScienceOn
4 Blank, M., Tang, Y., Yamashita, M., Burkett, S.S., Cheng, S.Y., and Zhang, Y.E. (2012). A tumor suppressor function of Smurf2 associated with controlling chromatin landscape and genome stability through RNF20. Nat. Med. 18, 227-234.   DOI   ScienceOn
5 Boisvert, F.M., Chenard, C.A., and Richard, S. (2005). Protein interfaces in signaling regulated by arginine methylation. Sci. STKE 2005, re2.
6 Cha, B., and Jho, E.H. (2012). Protein arginine methyltransferases (PRMTs) as therapeutic targets. Expert. Opin. Ther. Targets 16, 651-664.   DOI   ScienceOn
7 Cha, B., Kim, W., Kim, Y.K., Hwang, B.N., Park, S.Y., Yoon, J.W., Park, W.S., Cho, J.W., Bedford, M.T., and Jho, E.H. (2011). Methylation by protein arginine methyltransferase 1 increases stability of Axin, a negative regulator of Wnt signaling. Oncogene 30, 2379-2389.   DOI   ScienceOn
8 Deshaies, R.J., and Joazeiro, C.A. (2009). RING domain E3 ubiquitin ligases. Annu. Rev. Biochem. 78, 399-434.   DOI   ScienceOn
9 Dupont, S., Inui, M., and Newfeld, S.J. (2012). Regulation of TGFbeta signal transduction by mono- and deubiquitylation of Smads. FEBS Lett. 586, 1913-1920.   DOI   ScienceOn
10 Fukuchi, M., Fukai, Y., Masuda, N., Miyazaki, T., Nakajima, M., Sohda, M., Manda, R., Tsukada, K., Kato, H., and Kuwano, H. (2002). High-level expression of the Smad ubiquitin ligase Smurf2 correlates with poor prognosis in patients with esophageal squamous cell carcinoma. Cancer Res. 62, 7162-7165.
11 Izzi, L., and Attisano, L. (2004). Regulation of the TGFbeta signalling pathway by ubiquitin-mediated degradation. Oncogene 23, 2071-2078.   DOI   ScienceOn
12 Goulet, I., Gauvin, G., Boisvenue, S., and Cote, J. (2007). Alternative splicing yields protein arginine methyltransferase 1 isoforms with distinct activity, substrate specificity, and subcellular localization. J. Biol. Chem. 282, 33009-33021.   DOI   ScienceOn
13 Han, G., Li, A.G., Liang, Y.Y., Owens, P., He, W., Lu, S., Yoshimatsu, Y., Wang, D., Ten Dijke, P., Lin, X., et al. (2006). Smad7-induced beta-catenin degradation alters epidermal appendage development. Dev. Cell 11, 301-312.   DOI   ScienceOn
14 Hershko, A., and Ciechanover, A. (1998). The ubiquitin system. Annu. Rev. Biochem. 67, 425-479.   DOI   ScienceOn
15 Jin, C., Yang, Y.A., Anver, M.R., Morris, N., Wang, X., and Zhang, Y.E. (2009). Smad ubiquitination regulatory factor 2 promotes metastasis of breast cancer cells by enhancing migration and invasiveness. Cancer Res. 69, 735-740.   DOI   ScienceOn
16 Kim, S., and Jho, E.H. (2010). The protein stability of Axin, a negative regulator of Wnt signaling, is regulated by Smad ubiquitination regulatory factor 2 (Smurf2). J. Biol. Chem. 285, 36420-36426.   DOI   ScienceOn
17 Lonn, P., Moren, A., Raja, E., Dahl, M., and Moustakas, A. (2009). Regulating the stability of TGFbeta receptors and Smads. Cell Res. 19, 21-35.   DOI   ScienceOn
18 McBride, A.E., and Silver, P.A. (2001). State of the arg: protein methylation at arginine comes of age. Cell 106, 5-8.   DOI   ScienceOn
19 McBride, A.E., Weiss, V.H., Kim, H.K., Hogle, J.M., and Silver, P.A. (2000). Analysis of the yeast arginine methyltransferase Hmt1p/Rmt1p and its in vivo function. Cofactor binding and substrate interactions. J. Biol. Chem. 275, 3128-3136.   DOI   ScienceOn
20 Mukhopadhyay, D., and Riezman, H. (2007). Proteasomeindependent functions of ubiquitin in endocytosis and signaling. Science 315, 201-205.   DOI   ScienceOn
21 Osmundson, E.C., Ray, D., Moore, F.E., Gao, Q., Thomsen, G.H., and Kiyokawa, H. (2008). The HECT E3 ligase Smurf2 is required for Mad2-dependent spindle assembly checkpoint. J. Cell Biol. 183, 267-277.   DOI   ScienceOn
22 Pawlak, M.R., Scherer, C.A., Chen, J., Roshon, M.J., and Ruley, H.E. (2000). Arginine N-methyltransferase 1 is required for early postimplantation mouse development, but cells deficient in the enzyme are viable. Mol. Cell Biol. 20, 4859-4869.   DOI
23 Pickart, C.M. (2001). Mechanisms underlying ubiquitination. Annu Rev Biochem 70, 503-533.   DOI   ScienceOn
24 Rotin, D., and Kumar, S. (2009). Physiological functions of the HECT family of ubiquitin ligases. Nat. Rev. Mol. Cell. Biol. 10, 398-409.   DOI   ScienceOn
25 Tang, J., Frankel, A., Cook, R.J., Kim, S., Paik, W.K., Williams, K.R., Clarke, S., and Herschman, H.R. (2000). PRMT1 is the predominant type I protein arginine methyltransferase in mammalian cells. J. Biol. Chem. 275, 7723-7730.   DOI   ScienceOn
26 Tiscornia, G., Singer, O., Ikawa, M., and Verma, I.M. (2003). A general method for gene knockdown in mice by using lentiviral vectors expressing small interfering RNA. Proc. Natl. Acad. Sci. USA 100, 1844-1848.   DOI   ScienceOn
27 Xu, J., Wang, A.H., Oses-Prieto, J., Makhijani, K., Katsuno, Y., Pei, M., Yan, L., Zheng, Y.G., Burlingame, A., Bruckner, K., et al. (2013). Arginine Methylation Initiates BMP-Induced Smad Signaling. Mol. Cell 51, 5-19.   DOI   ScienceOn
28 Zhang, Y., Chang, C., Gehling, D.J., Hemmati-Brivanlou, A., and Derynck, R. (2001). Regulation of Smad degradation and activity by Smurf2, an E3 ubiquitin ligase. Proc. Natl. Acad. Sci. USA 98, 974-979.   DOI   ScienceOn
29 Yamagata, K., Daitoku, H., Takahashi, Y., Namiki, K., Hisatake, K., Kako, K., Mukai, H., Kasuya, Y., and Fukamizu, A. (2008). Arginine methylation of FOXO transcription factors inhibits their phosphorylation by Akt. Mol. Cell 32, 221-231.   DOI   ScienceOn