• Title/Summary/Keyword: T-space

Search Result 3,058, Processing Time 0.026 seconds

DIFFERENTIAL EQUATIONS ON CLOSED SUBSETS OF A PROBABILISTIC NORMED SPACE

  • Kim, Jong-Kyu;Jin, Byoung-Jae
    • Journal of applied mathematics & informatics
    • /
    • v.5 no.1
    • /
    • pp.223-233
    • /
    • 1998
  • This paper is concerned with the problem of existence of solutions to the initial value problem u'(t) = A(t, u(t)), u(a) = z in a probabilistic normed space where $A : [a,b)\;{\times}\;D->E$ is continuous, D is a closed subset of a probabilistic normed space E, and $z\;{\in}\;D$. With a dissipative type condition on A, we estabilish sufficient conditions for this initial value problem to have a solution.

The essential point spectrum of a regular operator

  • Lee, Woo-Young;Lee, Hong-Youl;Han, Young-Min
    • Bulletin of the Korean Mathematical Society
    • /
    • v.29 no.2
    • /
    • pp.295-300
    • /
    • 1992
  • In [5] it was shown that if T .mem. L(X) is regular on a Banach space X, with finite dimensional intersection T$^{-1}$ (0).cap.T(X) and if S .mem. L(X) is invertible, commute with T and has sufficiently small norm then T - S in upper semi-Fredholm, and hence essentially one-one, in the sense that the null space of T - S is finite dimensional ([4] Theorem 2; [5] Theorem 2). In this note we extend this result to incomplete normed space.

  • PDF

On the Gauss Map of Tubular Surfaces in Pseudo Galilean 3-Space

  • Tuncer, Yilmaz;Karacan, Murat Kemal;Yoon, Dae Won
    • Kyungpook Mathematical Journal
    • /
    • v.62 no.3
    • /
    • pp.497-507
    • /
    • 2022
  • In this study, we define tubular surfaces in Pseudo Galilean 3-space as type-1 or type-2. Using the X(s, t) position vectors of the surfaces and G(s, t) Gaussian transformations, we obtain equations for the two types of tubular surfaces that satisfy the conditions ∆X(s, t) = 0, ∆X(s, t) = AX(s, t), ∆X(s, t) = λX(s, t), ∆X(s, t) = ∆G(s, t), ∆G(s, t) = 0, ∆G(s, t) = AG(s, t) and ∆G(s, t) = λG(s, t).

CONDITIONAL INTEGRAL TRANSFORMS OF FUNCTIONALS ON A FUNCTION SPACE OF TWO VARIABLES

  • Bong Jin, Kim
    • Korean Journal of Mathematics
    • /
    • v.30 no.4
    • /
    • pp.593-601
    • /
    • 2022
  • Let C(Q) denote Yeh-Wiener space, the space of all real-valued continuous functions x(s, t) on Q ≡ [0, S] × [0, T] with x(s, 0) = x(0, t) = 0 for every (s, t) ∈ Q. For each partition τ = τm,n = {(si, tj)|i = 1, . . . , m, j = 1, . . . , n} of Q with 0 = s0 < s1 < . . . < sm = S and 0 = t0 < t1 < . . . < tn = T, define a random vector Xτ : C(Q) → ℝmn by Xτ (x) = (x(s1, t1), . . . , x(sm, tn)). In this paper we study the conditional integral transform and the conditional convolution product for a class of cylinder type functionals defined on K(Q) with a given conditioning function Xτ above, where K(Q)is the space of all complex valued continuous functions of two variables on Q which satify x(s, 0) = x(0, t) = 0 for every (s, t) ∈ Q. In particular we derive a useful equation which allows to calculate the conditional integral transform of the conditional convolution product without ever actually calculating convolution product or conditional convolution product.

GENERALIZED FOURIER-WIENER FUNCTION SPACE TRANSFORMS

  • Chang, Seung-Jun;Chung, Hyun-Soo
    • Journal of the Korean Mathematical Society
    • /
    • v.46 no.2
    • /
    • pp.327-345
    • /
    • 2009
  • In this paper, we define generalized Fourier-Hermite functionals on a function space $C_{a,b}[0,\;T]$ to obtain a complete orthonormal set in $L_2(C_{a,b}[0,\;T])$ where $C_{a,b}[0,\;T]$ is a very general function space. We then proceed to give a necessary and sufficient condition that a functional F in $L_2(C_{a,b}[0,\;T])$ has a generalized Fourier-Wiener function space transform ${\cal{F}}_{\sqrt{2},i}(F)$ also belonging to $L_2(C_{a,b}[0,\;T])$.

BOUNDARY-VALUED CONDITIONAL YEH-WIENER INTEGRALS AND A KAC-FEYNMAN WIENER INTEGRAL EQUATION

  • Park, Chull;David Skoug
    • Journal of the Korean Mathematical Society
    • /
    • v.33 no.4
    • /
    • pp.763-775
    • /
    • 1996
  • For $Q = [0,S] \times [0,T]$ let C(Q) denote Yeh-Wiener space, i.e., the space of all real-valued continuous functions x(s,t) on Q such that x(0,t) = x(s,0) = 0 for every (s,t) in Q. Yeh [10] defined a Gaussian measure $m_y$ on C(Q) (later modified in [13]) such that as a stochastic process ${x(s,t), (s,t) \epsilon Q}$ has mean $E[x(s,t)] = \smallint_{C(Q)} x(s,t)m_y(dx) = 0$ and covariance $E[x(s,t)x(u,\upsilon)] = min{s,u} min{t,\upsilon}$. Let $C_\omega \equiv C[0,T]$ denote the standard Wiener space on [0,T] with Wiener measure $m_\omega$. Yeh [12] introduced the concept of the conditional Wiener integral of F given X, E(F$\mid$X), and for case X(x) = x(T) obtained some very useful results including a Kac-Feynman integral equation.

  • PDF

A GENERALIZED SIMPLE FORMULA FOR EVALUATING RADON-NIKODYM DERIVATIVES OVER PATHS

  • Cho, Dong Hyun
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.3
    • /
    • pp.609-631
    • /
    • 2021
  • Let C[0, T] denote a generalized analogue of Wiener space, the space of real-valued continuous functions on the interval [0, T]. Define $Z_{\vec{e},n}$ : C[0, T] → ℝn+1 by $$Z_{\vec{e},n}(x)=\(x(0),\;{\int}_0^T\;e_1(t)dx(t),{\cdots},\;{\int}_0^T\;e_n(t)dx(t)\)$$, where e1,…, en are of bounded variations on [0, T]. In this paper we derive a simple evaluation formula for Radon-Nikodym derivatives similar to the conditional expectations of functions on C[0, T] with the conditioning function $Z_{\vec{e},n}$ which has an initial weight and a kind of drift. As applications of the formula, we evaluate the Radon-Nikodym derivatives of various functions on C[0, T] which are of interested in Feynman integration theory and quantum mechanics. This work generalizes and simplifies the existing results, that is, the simple formulas with the conditioning functions related to the partitions of time interval [0, T].

NONLINEAR DIFFERENTIAL EQUATIONS OF SECOND ORDER IN A HILBERT SPACE

  • Kim, RakJoong
    • Korean Journal of Mathematics
    • /
    • v.16 no.1
    • /
    • pp.91-101
    • /
    • 2008
  • Let H be a Hilbert space. Assume that $0{\leq}{\alpha}$, ${\beta}{\leq}1$ and r(t) > 0 in I = [0, T]. By means of the fixed point theorem of Leray-Schauder type the existence principles of solutions for two point boundary value problems of the form $\array{(r(t)x^{\prime}(t))^{\prime}+f(t,x(t),r(t)x^{\prime}(t))=0,\;t{\in}I\\x(0)=x(T)=0}$ are established where f satisfies for positive constants a, b and c ${\mid}{f(t,x,y){\mid}{\leq}a{\mid}x{\mid}^{\alpha}+b{\mid}y{\mid}^{\beta}+c\;\;for\;all(t,x,y){\in}I{\times}H{\times}H$.

  • PDF