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FURTHER RESULTS INVOLVING THE HILBERT SPACE L2
a,b[0, T ]

Jae Gil Choi a, ∗ and David Skoug b

Abstract. In this paper we determine conditions which a function a(t) must sat-
isfy to insure that the function a′(t) is an element of the separable Hilbert space
L2

a,b[0, T ]. We then proceed to illustrate our results with several pertinent examples
and counter-examples.

1. Introduction

In the early 1920’s, Nobert Wiener introduced the concept of “integration in func-

tion space” and hence it is fitting that the space of real-valued continuous functions

C0[0, T ] equipped with an appropriate Gaussian measure is called the one-parameter

Wiener space. In [9], Yeh introduced a function space Ca,b[0, T ] related to a gener-

alized Brownian motion. This theory was developed further by Chang and Chung

in [3] for appropriate functions a(t) and b(t) on [0, T ]. Also see [2, 4, 5, 7, 8] for

additional related results. The function a(t) is often interpreted as the “drift” of

the associated stochastic process, and will be our primary object of interest in this

paper. In particular, we determine conditions under which translation by this func-

tion will result in an equivalent Gaussian measure on the corresponding generalized

Wiener space.

Let (Ω,F ,P) be a probability space. A real-valued stochastic process X on

(Ω,F ,P) and a time interval [0, T ] is called a generalized Brownian motion provided

X(0, ω) = 0 a.e. ω and for 0 = t0 < t1 < · · · < tn ≤ T , the random vector

(X(t1, ω), . . . , X(tn, ω)) has a normal distribution with density function(
(2π)n

n∏
i=1

[b(ti)− b(ti−1)]

)−1/2

exp

(
− 1

2

n∑
i=1

([ui − a(ti)]− [ui−1 − a(ti−1)])
2

b(ti)− b(ti−1)

)
,
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with u0 = 0, and where a(t) and b(t) are suitable continuous real-valued functions.

In particular, we will assume a(t) to be absolutely continuous with a(0) = 0 and

a′ ∈ L2[0, T ] and will also assume b(t) to be strictly increasing and continuously dif-

ferentiable with b(0) = 0 and b′(t) > 0 for all t ∈ [0, T ]. We note that the generalized

Brownian motion process X determined by the functions a and b is Gaussian with

mean a(t) and covariance r(s, t) = min{b(s), b(t)}. Let (Ca,b[0, T ],W(Ca,b[0, T ], µ)

denote the complete generalizedWiener space. Note also that the generalizedWiener

space reduces to the classical Wiener space precisely when a(t) = 0 and b(t) = t for

all t ∈ [0, T ].

2. Cameron–Martin Spaces

By their nature, Gaussian measures on function spaces do not enjoy the property

of translation invariance. However, as first shown by Cameron and Martin in [1], it

is possible to compute the Radon–Nikodym derivatives of measures resulting from

certain translations. Specially, there is a particular class of functions, which along

with translation results, yields an equivalent Gaussian measure. In the case of

ordinary Wiener space, this collection of allowable translates coincides with the

Sobolev space H1
0 (0, T ) of functions vanishing at 0 and having square-integrable

weak derivatives on (0, T ). For a generalized Wiener space a similar, but more

complicated, result holds.

Let L2
a,b[0, T ] be the separable Hilbert space of functions on [0, T ] which are

Lebesgue measurable and square integrable with respect to the Lebesgue–Stieltjes

measures on [0, T ] induced by the functions a and b; i.e.,

L2
a,b[0, T ] =

{
v :

∫ T

0
v2(t)db(t) < ∞ and

∫ T

0
v2(t)d|a|(t) < ∞

}
,

where |a|(t) denotes the total variation of the function of a on [0, t]. Under our

working assumptions on the functions a and b, from [3, 7] we have the following

generalization of Cameron and Martin’s celebrated Translation Theorem.

Theorem 2.1. Let z ∈ L2
a,b[0, T ] and let x0(t) =

∫ t
0 z(s)db(s). If F is an integrable

function on Ca,b[0, T ], then∫
Ca,b[0,T ]

F (x+ x0)µ(dx)

= exp

(
− 1

2

∫ T

0
z2(s)db(s)−

∫ T

0
z(s)da(s)

)∫
Ca,b[0,T ]

F (x) exp(⟨z, x⟩)µ(dx),
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where ⟨z, x⟩ denotes the Paley–Wiener–Zygmund stochastic integral of z (cf. [8]).

Notice that the Radon–Nikodym derivative involves three contributions. Of these,

the stochastic integral ⟨z, x⟩ is exactly as observed in the Cameron–Martin Theorem

and the term −1
2

∫ T
0 z2(s)db(s) = −∥z∥2b

2 is the direct analog of the corresponding

term −∥z∥22
2 in the original theorem. The third contributor,

∫ T
0 z(s)da(s), resulting

from the interaction of the drift function a(t) with the translation, is new. This

additional interaction is what introduces additional difficulty in working in these

more general spaces; for example see [6]. Therefore, it is necessary to develop a

better understanding of its behavior.

Recall that b(t) is assumed to be a strictly-increasing, continuously differentiable,

real valued function on [0, T ] with b(0) = 0 and with b′(t) strictly positive. Let

(2.1) m = min
[0,T ]

b′(t)

and

(2.2) M = max
[0,T ]

b′(t).

It follows from the continuity of b′ that

(2.3) 0 < m ≤ b′(t) ≤ M < +∞

and that

(2.4) 0 <
1

M
≤ 1

b′(t)
≤ 1

m
< +∞

for each t ∈ [0, T ].

Remark 2.2. In this paper as well as in [2,4,5,7,8], |a|(·) denotes the total variation
function of a(·) on [0, T ]. It is easy to see that |a|′(t) = |a′(t)| for mL-a.e. t ∈ [0, T ]

where mL denotes Lebesgue measure on [0, T ]. Thus it follows that

Var(a) =

∫ T

0
d|a|(t) =

∫ T

0
|a′(t)|dt,∫ T

0
|a′(t)|d|a|(t) =

∫ T

0
|a′(t)|2dt

and

(2.5)

∫ T

0
|a′(t)|2d|a|(t) =

∫ T

0
|a′(t)|3dt.

In our next theorem we show that the functions b(t) and b′(t) are elements of the

Hilbert space L2
a,b[0, T ].
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Theorem 2.3. The functions b(t) and b′(t) are both elements of the Hilbert space

L2
a,b[0, T ].

Proof. We first note that the function b(t) is an element of L2
a,b[0, T ] because∫ T

0
b2(t)db(t) =

b3(T )

3
< +∞

and ∫ T

0
b2(t)d|a|(t) ≤ b2(T )

∫ T

0
d|a|(t) ≤ b2(T )

√
T∥a′∥2 < +∞

by the Cauchy–Schwartz inequality.

Next, using (2.1) through (2.4) above, we note that b′(t) is also an element of

L2
a,b[0, T ] since∫ T

0
|b′(t)|2db(t) =

∫ T

0
[b′(t)]2b′(t)dt =

∫ T

0
[b′(t)]3dt ≤ M3T < +∞

and ∫ T

0
|b′(t)|2d|a|(t) ≤ M2

∫ T

0
d|a|(t) ≤ M2

√
T∥a′∥2 < +∞

by the Cauchy–Schwartz inequality. �

Theorem 2.3 above tells us that the functions b(t) and b′(t) will always be allow-

able translates. Our next theorem will help us determine in Section 3 below whether

or not the mean function a(t) enjoys this same property.

Theorem 2.4. The following three statements are equivalent:

(i)
∫ T
0 |a′(t)|2d|a|(t) < +∞,

(ii) a′ ∈ L2
a,b[0, T ],

(iii) a′

b′ ∈ L2
a,b[0, T ].

Proof. Statement (ii) holds if and only if statement (iii) holds by (2.4) above. It is

immediate that statement (ii) implies statement (i). What remains to be shown is

that statement (i) implies that∫ T

0

[
a′(t)

b′(t)

]2
d[b(t) + |a|(t)] < +∞.

But, by the assumptions on the function a(t) and using (2.4) above, it follows that∫ T

0

[
a′(t)

b′(t)

]2
db(t) =

∫ T

0

[a′(t)]2

b′(t)
dt ≤ 1

m

∫ T

0
[a′(t)]2dt < +∞,
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and also that ∫ T

0

[
a′(t)

b′(t)

]2
d|a|(t) ≤ 1

m2

∫ T

0
[a′(t)]2d|a|(t) < +∞.

Hence statement (i) implies statement (ii) and so the proof of Theorem 2.4 is com-

plete. �

3. When is a′ ∈ L2
a,b[0, T ] ?

In this section we are interested in finding conditions on a(t) which will guarantee

that the function a′(t) is an element of L2
a,b[0, T ]. That is, must it necessarily be

true that ∫ T

0
|a′(t)|2db(t) < +∞

and that ∫ T

0
|a′(t)|2d|a|(t) < +∞ ?

As the following example shows, the answer to this question is “no” in general.

Example 3.1. Let a(t) = t2/3 and let b(t) = t on [0, T ]. Then∫ T

0
|a′(t)|2db(t) = 4

9

∫ T

0
t−2/3dt =

4T 1/3

3
< +∞

and ∫ T

0
|a′(t)|2d|a|(t) = 8

27

∫ T

0

1

t
dt = +∞.

Thus in this case a′ ̸∈ L2
a,b[0, T ].

Theorem 3.2. Let b(t) be as in Section 2 above and let a(t) = tα for α > 0. Then

a′ ∈ L2
a,b[0, T ] if and only if α > 2

3 .

Proof. (i) Let α > 2
3 be given. In view of Theorem 2.4 above it will suffice to show

that
∫ T
0 |a′(t)|2d|a|(t) < +∞. But because α > 2

3 it follows that 3α− 2 > 0 and so∫ T

0
|a′(t)|2d|a|(t) =

∫ T

0
|a′(t)|3dt =

∫ T

0
|αtα−1|3dt = α3

∫ T

0
t3α−3dt

=
α3T 3α−2

3α− 2
< +∞

as desired.
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(ii) If α ≤ 2/3, then 3α− 3 ≤ −1, and so∫ T

0
|αtα−1|3dt = |α|3

∫ T

0
t3α−3dt

= |α|3
∫ 1

0
t3α−3dt+ |α|3

∫ T

1
t3α−3dt

≥ |α|3
∫ 1

0
t−1dt+ |α|3

∫ T

1
t3α−3dt

= +∞+ |α|3
∫ T

1
t3α−3dt

= +∞.

�

Corollary 3.3. If a(t) is a polynomial, then a′ ∈ L2
a,b[0, T ].

Example 3.4. Let a(t) =

{
0 , 0 ≤ t ≤ T/2

2(t− T/2) , T/2 ≤ t ≤ T
. Then

a′(t) =

{
0 , 0 ≤ t < T/2

2 , T/2 < t ≤ T
,

∫ T

0
|a′(t)|2dt = 2T,

∫ T

0
|a′(t)|2d|a|(t) =

∫ T

T/2
|a′(t)|3dt = 4T,

and ∫ T

0
|a′(t)|2db(t) = 4[b(T )− b(T/2)].

Example 3.5. Let b(t) be as in Section 2 above with T = π/2 and let a(t) = sin(t)

on [0, π/2]. Then a′(t) = cos(t) ∈ L2
a,b[0, T ] and∫ π/2

0
|a′(t)|2db(t) =

∫ π/2

0
cos2(t)b′(t)dt.

Furthermore ∫ π/2

0
|a′(t)|2d|a|(t) =

∫ π/2

0
cos3(t)dt.
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Remark 3.6. The following well-known integration formula will be useful in Ex-

ample 3.7 below. For x > 0 and k > 0,

(3.1)

∫
ln3(kx)dx = x ln3(kx)− 3

∫
ln2(kx)dx.

Example 3.7. In this example we will assume that T ≥ 1 so that ln(t+ T ) ≥ 0 for

all t ∈ [0, T ]. Let b(t) be as in Section 2 above and let

a(t) = (T + t) ln(t+ T )− (t+ T ln(T ))

on [0, T ]. Then a(0) = 0,

a(T ) = 2T ln(2T )− T (1 + ln(T )) = T [2 ln(2T )− 1− ln(T )],

and

a′(t) = ln(t+ T )

on [0, T ]. Furthermore∫ T

0
|a′(t)|2db(t) =

∫ T

0
[ln(t+ T )]2db(t) =

∫ T

0
[ln(t+ T )]2b′(t)dt.

In addition, using (3.1) above, it follows that∫ T

0
|a′(t)|2d|a|(t) =

∫ T

0
|a′(t)|3dt

=

∫ T

0
ln3(t+ T )dt

= (t+ T ) ln3(t+ T )
∣∣∣T
0
− 3

∫ T

0
ln2(t+ T )dt

= 2T ln3(2T )− T ln3(T )− 3(t+ T )[ln2(t+ T )− 2 ln(t+ T ) + 2]
∣∣∣T
0

= 2T ln3(2T )− T ln3(T )− 6T [ln2(2T )− 2 ln(2T ) + 2] + 3T [ln2(T )− 2 ln(T ) + 2]

= 2T ln3(2T )− T ln3(T )− 6T ln2(2T ) + 12T ln(2T )− 12T

+ 3T ln2(T )− 6T ln(T ) + 6T

= 2T [ln3(2T )− 3 ln2(2T ) + 6 ln(2T )]− T [ln3(T )− 3 ln2(T ) + 6 ln(T ) + 6].

Theorem 3.8. Let b(t) be as in Section 2 above. Assume that a(t) satisfies a

Lipschitz condition on [0, T ]. Then a′ ∈ L2
a,b[0, T ].
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Proof. It is a well known fact that an absolutely continuous function a satisfies a

Lipschitz condition on [0, T ] if and only if |a′| is bounded. For each t ∈ [0, T ], let

|a′(t)| ≤ K for some K > 0. Then∫ T

0
|a′(t)|2db(t) ≤ K2

∫ T

0
db(t) = K2b(T ) < +∞

and ∫ T

0
|a′(t)|2d|a|(t) ≤ K

∫ T

0
|a′(t)|2dt < +∞.

�

Theorem 3.9. Let b(t) be as in Section 2 above. Let n be a positive integer and let

a(t) = tnet

on [0, T ]. Then a′ ∈ L2
a,b[0, T ] and satisfies the equation∫ T

0
|a′(t)|2d|a(t)| =

∫ T

0
|a′(t)|3dt =

∫ T

0
t3(n−1)e3t(t+ n)3dt.

Proof. We first note that for all t ∈ [0, T ],

a′(t) = tn−1et(t+ n).

Hence ∫ T

0
|a′(t)|2db(t) =

∫ T

0
t2(n−1)e2t(t+ n)2db(t) < +∞

and that∫ T

0
|a′(t)|2d|a|(t) =

∫ T

0
|a′(t)|3dt =

∫ T

0
t3(n−1)e3t(t+ n)3dt < +∞

for each positive integer n. �

Example 3.10. Let n = 2 in Theorem 3.9 above. Then

a(t) = t2et,

a′(t) = t(t+ 2)et,

and ∫ T

0
|a′(t)|2d|a|(t) =

∫ T

0
|a′(t)|3dt

=

∫ T

0
t3(t3 + 6t2 + 12t+ 8)e3tdt

=

∫ T

0
[t6 + 6t5 + 12t4 + 8t3]e3tdt.
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Example 3.11. Let a(t) = t3et. Then proceeding as in Example 3.10 above, it

follows that ∫ T

0
|a′(t)|2d|a|(t) =

∫ T

0
[t9 + 9t8 + 27t7 + 27t6]e3tdt.

Example 3.12. More generally it follows quite easily that:

(i) If a(t) = t4et then∫ T

0
|a′(t)|2d|a|(t) =

∫ T

0
[t12 + 12t11 + 48t10 + 64t9]e3tdt.

(ii) If a(t) = t5et then∫ T

0
|a′(t)|2d|a|(t) =

∫ T

0
[t15 + 15t14 + 75t13 + 125t12]e3tdt.

(iii) If a(t) = t6et then∫ T

0
|a′(t)|2d|a|(t) =

∫ T

0
[t18 + 18t17 + 108t16 + 216t15]e3tdt.

(iv) If a(t) = t7et then∫ T

0
|a′(t)|2d|a|(t) =

∫ T

0
[t21 + 21t20 + 147t19 + 343t18]e3tdt.

Example 3.13. In Example 3.5 above, we discussed the functions b(t) and a(t) on

the interval [0, T ] with T = π/2 so that the function a(t) is increasing on [0, π/2].

But, the restriction T = π/2 is not needed. For example, let b(t) be as in Section 2

above with T = π and let a(t) = sin t on [0, π]. Then

|a|(t) =

{
sin(t) , t ∈ [0, π/2]

− sin(t) + 2 , t ∈ [π/2, π]
,

|a|′(t) = |a′(t)| = a′(t) = | cos(t)| in L2
a,b[0, T ],∫ π

0
|a′(t)|2db(t) =

∫ π

0
cos2(t)b′(t)dt,

and ∫ π

0
|a′(t)|2d|a|(t) =

∫ π/2

0
cos3(t)dt−

∫ π

π/2
cos3(t)dt = 2

∫ π/2

0
cos3(t)dt.

Remark 3.14. One can see that the derivatives a′(t) of the suggested functions a(t)

in Examples 3.4 through 3.13 are bounded on [0, T ]. Thus it follows that the a′(t)’s

are elements of L2
a,b[0, T ] in view of Theorem 3.8.
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We finish this paper with the following theorem which gives a different condition

on the function a(t).

Theorem 3.15. Let b(t) be as in Section 2 above. Given a function a(t) on [0, T ],

assume that a′ is an element of L3[0, T ]. Then a′ ∈ L2
a,b[0, T ].

Proof. Using (2.2), it first follows that∫ T

0
|a′(t)|2db(t) ≤ M

∫ T

0
|a′(t)|2dt < +∞.

Next using (2.5), it also follows that∫ T

0
|a′(t)|2d|a|(t) =

∫ T

0
|a′(t)|3dt < +∞.

�

Remark 3.16. If a is an indefinite integral of a function in L3[0, T ], that is,

a(t) =

∫ t

0
u(s)ds for some u ∈ L3[0, T ],

then, in view of Theorem 3.15, the function a′ is in L2
a,b[0, T ]. The class L3[0, T ]

contains many unbounded functions on [0, T ].
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