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GENERALIZED FOURIER-WIENER FUNCTION SPACE
TRANSFORMS

SEUNG JUN CHANG AND HYUN S00 CHUNG

ABSTRACT. In this paper, we define generalized Fourier-Hermite func-
tionals on a function space Cy 4[0,T] to obtain a complete orthonormal
set in L2(Cq [0,T]) where Cy [0,T] is a very general function space.
We then proceed to give a necessary and sufficient condition that a func-
tional F'in L2(Cy 5[0, T]) has a generalized Fourier-Wiener function space
transform F. 5 ;(F) also belonging to L2(Clo,p[0, T7).

1. Introduction

Let Cy[0,T] denote one-parameter Wiener space, that is the space of real-
valued continuous function z on [0,7] with 2(0) = 0. The concept of the
Fourier-Wiener transforms was introduced by Cameron and Martin in [2]. In
[3], the authors defined a modified Fourier-Wiener transform and gave vari-
ous relationships for the modified Fourier-Wiener transform of functionals in
L2(Cy[0,T]). For these works, in [4], using the Wiener measure on Cy[0,T] and
completeness properties of the Hermite polynomials on R, they introduced a
complete orthonormal set in L2(Cy[0,7T]) and gave a Fourier development for
functionals in La(Cy[0, T]) which converges in the Lq(Cy[0,T7).

The function space Cq [0, T] induced by generalized Brownian motion was
introduced by J. Yea in [16] and was used extensively by Chang and Chung [7].
In this paper, we extend the results of [1-4] to a very general function space
Co.5[0,T] rather than the Wiener space Cy[0,T]. The Wiener process used in
[1-6, 10] is stationary in time and is free of drift while the stochastic process
used in this paper as well as in [7-9], in nonstationary in time, is subject to a
drift a(t), and can be used to explain the position of the Ornstein-Uhlenbeck
process in an external force field [14]. However, when a(t) = 0 and b(t) = ¢

on [0,T], the general function space Cq[0,T] reduces to the Wiener space
CO [Oa T] .
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2. Definitions and preliminaries

Let D = [0,T] and let (€2, 8, P) be a probability measure space. A real-
valued stochastic process Y on (2, B, P) and D is called a generalized Brownian
motion process if Y (0,w)=0 almost everywhere and for 0 = tp < t; < -+ <
t, < T, the n-dimensional random vector (Y (t1,w),...,Y (t,,w)) is normally
distributed with density function

(2.1)

where 7= (01,...,Mn), M0 = 0, £ = (t1,...,t,), a(t) is an absolutely continuous
real-valued function on [0, T] with a(0) = 0, a/(t) € L2[0,T] and b(t) is a strictly
increasing continuously differentiable real-valued function with b(¢) > 0 and
b'(t) > 0 for each ¢ € [0,T].

As explained in [15, pp. 18-20], Y induces a probability measure p on the
measurable space (RP, BP), where RP is the space of all real valued functions
x(t), t € D, and BP is the smallest o-algebra of subsets of R with respect to
which all the coordinate evaluation maps e;(z) = z(t) defined on R are mea-
surable. The triple (RD ,BP. ) is a probability measure space. This measure
space is called the function space induced by the generalized Brownian motion
process Y determined by a(-) and b(-).

We note that the generalized Brownian motion process Y determined by a(-)
and b(-) is a Gaussian process with mean function a(t) and covariance function
r(s,t) = min{b(s), b(¢t)}. By Theorem 14.2 [15, p. 187], the probability measure
w induced by Y, taking a separable version, is supported by Cj 5[0, T] (which is
equivalent to the Banach space of continuous functions « on [0, 7] with z(0) = 0
under the sup norm). Hence (Cq (0,77, B(Cy5[0,T1]), i) is the function space
induced by Y, where B(C, [0, T]) is the Boreal o-algebra of Cq 5[0, T'.

A subset B of C,[0,T] is said to be scale-invariant measurable provided
pB is B(Cy [0, T])-measurable for all p > 0, and a scale-invariant measurable
set N is said to be a scale-invariant null set provided pu(pN) = 0 for all p > 0.
A property that holds except on a scale-invariant null set is said to hold scale-
invariant almost everywhere(s-a.e.). If two functionals F' and G are equal
scale-invariant almost everywhere, we write F' ~ G.

Let Li’ »[0, T be the Hilbert space of functions on [0, 7] which are Lebesgue
measurable and square integrable with respect to the Lebesgue Stieltjes mea-
sures on [0, 7] induced by a(-) and b(-); i.e.,

(2.2) Lzyb[O,T] = {v : /0 v%(s)db(s) < oo and /0 v%(s)d|a|(s) < oo}7

where |a|(t) denotes the total variation of the function @ on the interval [0, ¢].
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For u,v € Li,b[O,T], let

(2.3) (U, V)ap = /0 w(®)v(t)d[b(t) + |a|(t)].

(4, u)q,p is a nOTM

Then (-, -)q,p is an inner product on LZVb[O7 T
on L7 ,[0,T]. In particular, note that [uls, = 0 if and only if u(t) = 0 a.e. on
[0, T]. Furthermore (Li,b[O, T, - lla,p) is a separable Hilbert space. Note that
all functions of bounded variation on [0, T] are elements of L7 ,[0,T]. Also note
that if a(t) = 0 and b(t) =t on [0, T], then L? ,[0,T] = L?[0,T]. In fact,

(La b0, T 11 llaw) € (L3 [0, T[] - [lo) = (L2[0, T], I - ||2)

since the two norms || - ||o,p and || - ||2 are equivalent.
Let {¢;}32, be a complete orthonormal set of real-valued functions of bound-
ed variation on [0, 7] such that

0, j#k

(5, Pk )ap = {1’ P

and for each v € L2 [0, 77, let

(2.4) Z 0, 95)a,b85(t)

for n = 1,2,.... Then for each v € Lgyb[O,T], the Palely-Wiener-Zygmund
(PWZ) stochastic integral (v, z) is defined by the formula
T
(2.5) (v,z) = lim v (t)dx(t)
n—oo 0

for all # € C,[0,T] for which the limit exists; one can show that for each
v e L2 ,[0,T], the PWZ integral (v, z) exists for p-a.e. x € Cop0,T].
Followings are some facts about the PWZ stochastic integral.

(1) For each v € LZVZ,[O,T]7 the PWZ integral (v, x) exists for p-a.e. = €
Ca,b[oa T]

(2) The PWZ integral (v, z) is essentially independent of the complete
orthonormal set {¢;}52,

(3) If v is of bounded variation on [0, T] then the PWZ integral (v,x)
equals the Riemann-Stieltjes integral fo t)dz(t) for s-a.e. x €Cy [0, T7.

(4) The PWZ integral has the expected linearity properties.

(5) For all v € L2 10,17, (v, ) is a Gaussian random variable with mean

fo and variance fo 2(s)db(s).
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We denote the function space integral of a B(Cy [0, T])-measurable func-
tional F' by

(2.6) BIF)= [ F@dut
Ca,b[ofT]
whenever the integral exists.

3. Complete orthonormal sets in La(R) and L2 (R™)

In this section, we define generalized normalizing Hermite functions. We use
them to obtain a complete orthonormal set in Lo(R) and Lo(R™).

Definition 3.1. For each m = 0,1,... and ¢t € [0,T], we define a generalized

. . . u—a(t)
Hermite polynomial in NCT) of degree m by

(3.1)
= e T (o0
For examples, we see that
u— aft) u— af(t)

H()(U;t) = 1,H1(u,t) =

O] and Hg(u;t)1+< o >2.

We note that for each m =0,1,... and t € [0, T,

—alt 1
Ha(ui) = (“Z20 ) ust) = (00) 11, ),
b(t)
where / means %. And for each m =1,2,... and t € [0, 7],
Hatust) = () st + 1 (0i) =0
b(t)
and so
(3.2) H (u;t) = ——— 1 (ust)
. m ’ - b(t) m—1 sy U).

Lemma 3.2. For any nonnegative integers m and k,
2
(u—a(t))
I= ———— S Hp(u;t)Hp (u; t)d
[ e =g s sty

40 if k#m
O kN2mb(8)  if k=m.

(3.3)

Proof. Assume that m < k. Let

olust) = exp{_w}.
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Then

eXp{‘%}%w = (1) ((0) *¢ (1),

By using this above, we obtain that

= (=1 (b(r))* / o8 (u 0) Hy 1 ),

By using integration by parts formulas, we obtain that

I= (1)k(b(t))g{so(’“1)(U;t)Hm(U;t) */R<P(k’1)(U;t)Hé@(U;t)du

k
2

= (P 0) [ o ) Hy (ust)du
R
Continuing on this manner, we obtain that
k
I= (=)™ (b(t))? / @) (u; £) H™ (w; t) du.
R

But if m < k, then I = 0. If K = m, then by using equation (3.2) above,

I= (—1)%(()(”)%/ (k;’é p{_(u;bic(bt(;)f}du

:k:!/ReXp{ (1 ‘(l())) }du

= kl\/27b(t)

which completes the proof of Lemma 3.2. Il

We are ready to define generalized Hermite functions and a sequence of
generalized normalizing Hermite functions {K,,}$_, which is a complete or-
thonormal set in La(R).

Definition 3.3. For each m = 0,1,... and ¢t € [0,T], we define a generalized
Hermite function of degree m by

B (ust) = Hy, (u;t) exp{—%}

and we define a generalized normalizing Hermite function of degree m by
(3.4) Kp(u;t) = (m!/2mb(t)) 2 b (us t).
Now, we are ready to obtain a complete orthonormal set in Lo(R).

Theorem 3.4. The set of functions {K.,}5°_, defined by (3.4) is an orthonor-
mal set in La(R).
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Proof. By using equation (3.3) above, it immediately follows that for all non-
negative integers k and m,

/Kk u; t )d
= /]R(k: V27b(t)) 2hk(u t)(m! Zwb(t))_%hm(u;t)du

= (k! 27rb(t))_%( \V/27b(t) : Hk w; t) Hp (u; t) eXp{ (u ;b((zt) }du
= 5k,m- O
Theorem 3.5. The set {K,,}2°_, is a complete orthonormal set in La(R).
Proof. For each m =0,1,... and f € La(R), assume that

/ Ky, (u;t) f(u)du = 0.
R

It suffices to show that f =0 a.e.. Let

g(u) = exp{—(u;bicgt(;w }f(U)

for u € R. Then g € L1(R) and so the Fourier transform

F(z)= /Rexp{izu}g(u)du

exists for all z € C. Also \/%F |r is the inverse Fourier transform of g. Thus

if F(z) =0, then by uniqueness of the inverse Fourier transform, g = 0 and so
f=0a.e onR.
Since F' is an entire function, we can write

oo
z) = Z bp2",
n=0
where b,, = % But

F(z) = /}R(zu)" exp{izu - w}f(u)du

4b(t)
and F(™(0) = 0 and hence b,, = 0 for all n and so F(z) = 0. O
Definition 3.6. For each j = 1,2,..., let m; be a nonnegative integer. For

(U1,...,up) € R, let
(35) K(ml,...,mn)(ula~'~7un; = H my Uja

where K, (uj;t) is given by equation (3.4) above.
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In our next theorem, we also give a complete orthonormal set in Lo (R™).
Theorem 3.7. The set of generalized normalizing Hermite functions
{K(mlywwmn)}gjl,...7mn:O
is a complete orthonormal set in Lo(R™).

Proof. By using Theorem 3.4 and the fact that the set of functions of the
form {fifo-- fn: fj € La(R),j =1,...,n} is dense in Ly(R™), we obtain the
desired result. O

Definition 3.8. For each g € Ly(R™), the generalized Hermite coefficient
of g with respect to the complete orthonormal set { K, ...m.)} my....m, =0 15
defined by the formula

aé]ml,...,mn) = / 9(@)K(m1,7mn)(ﬁ, t)d’ﬂ:

Aﬂwmﬁpgﬂwﬁﬁm.

Remark 3.9. By Theorem 3.7, it follows that

(3.6)

N n
g(ula B un) = ]\}gnoo Z a(gml,...,mn) H ij (uj; t),
mi,...,mn=>0 Jj=1
that is to say that
N n 2
Llo@= 3 at ) I e da
" mi,...,mn=0 j=1

goes to zero as N — o0.

4. A complete orthonormal set in Ly(C4q,5[0,T])

In this section, we define the generalized Fourier-Hermite coefficient and the
generalized Fourier-Hermite functionals. We then obtain a complete orthonor-
mal set in La(Cy 5[0, T]).

The following notations are used throughout this paper:

(4.1) A, E/O a;(t)da(t)

and

T
(4.2) jz[;@@@m,
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where {¢;} is a complete orthonormal set in Lijb[(), T]. We note that for each
i=1,2,...,

T T
0<B;= /O o (t)db(t) < /O o (H)d[b(t) + la|(t)] = lloyllZ, = 1,

while A; may be positive, negative or zero. We also note that if a(f) = 0 on
[0,T], then A; =0 and B; =1 for each j =1,2,.. ..

The following integration formula used several times throughout this paper:

Let {a, ..., a,} be an orthonormal set of functions from (Li’b[O, TL 1 lap)-
Let h : R™ — R be Lebesgue measurable and let H(z) = h({aq1,),. .., {an,x)).
Then

1
2

/c o H(z)du(z) = ( ﬁ Qij) ) . h(u, ..., un)
(4.3) o j=1 g 2
.eXp{ Z%}dur-'dun

j=1 J

in the sense that if either side exists, both sides exist and equality holds.

Using formula (4.3) we observe that E[(aj, z)] = Aj, E[(a;, )% = Bj + A3
and that Var({a;,z)) = B; foreach j =1,...,n.

Also note that the complete orthonormal set {ai,as,...} in Li,b[O,T] is
completely at our disposal. For example, we could choose the «;’s to the
continuous and of bounded variation on [0,T], or we could choose the ¢;’s to
the Haar functions on [0, 77, etc.

To obtain a complete orthonormal set in Lo(Cy 5[0, T]), we define a gener-
alized Hermite polynomial and a generalized normalizing Hermite function as
below.

Definition 4.1. For each m = 0,1,... and for each j = 1,2,..., we define a
generalized Hermite polynomial by

Hi, (u) = (1) (m!) =% (B;) ¥ exp{w} - (XP{M})

2Bj dum QBJ

and we define a generalized normalizing Hermite polynomial by

4B;

17 ~ — A2
K (u) = <2ﬂBj>iHa<u>exp{u}’

J
where A; and B; are as in equations (4.1) and (4.2) above respectively.

Remark 4.2. (1) If a(t) = 0 on [0,T7], then for all j = 1,2,..., A; = 0 and
Bj = 1. In case, H}, and K}, are defined independently of j’s.
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(2) We can easily see that for each j =1,2,.., {Km}m o Is a complete or-
thonormal set in Ly(R). Furthermore, for all j =1,...,n, let m; be a nonneg-

ative integer. Then the set {K(1 ")

(ml ,m")}ml,...,mn

set in Ly(R™), where K™ (i) = IT-, f{,]nJ (u;).

(m1,...,my)
(3) For each positive 1nteger k and nonnegative integer m, let

Plm o (2) = Hp, ((ax, 7).

For each j =1,...,k, let m; be a nonnegative integer. Let

—o is a complete orthonormal

Py ,...omy) () = @(ml (@) P(mz,2) () P k) ()
H . Oék,

The functionals in equation (4.4) are called the generalized Fourier-Hermite
functionals on Cy [0, T

(4.4)

The three assertions in the following statements follow by easily from Re-
mark 4.2:

(1) @(0,k)(x) = 1 for all positive integer k.

(2) @iy i) () = Py, 0,...,0) (@) for all positive integer .

(3) Inserting zeroes to the left of a non-zero entry in ® change the values of
.

Theorem 4.3. The set of functionals M = { @, m,) 1721 s an orthonor-
mal set in La(Cyp[0,T]).

Proof. By using formula (4.3) above, it follows that

/ q)(ml,m,mk)(x)q)(m ,,,,, nk)(x)dﬂ(x)
a, b[O T]

[f[ o) [T 2, st

(G Lo £

Jj= J

ab[O T]

k k
— K j
J T )] [T 8 -t
J=1 =1
= 6m17n15m2,n2 e '5mk,nk' O

In order to show that the set of functionals M in Theorem 4.3 is complete we
will show that every functional F in Ly(C,4[0,T]) has a generalized Fourier-
Hermite series expansion in terms of the functionals in M.
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Definition 4.4. For each F' € Ly(C,[0,T]) and ®(,,, ... m,) € M, the gener-
alized Fourier-Hermite coefficient of F' is defined by

(4.5) Ao = [ Py (@)i).

a b[O T]
Lemma 4.5. For @ = (u1,...,u,) € R, let f(@) be a measurable function
such that )

- ~ (v — 4))

Let F : Cy [0, T] — R be a functional defined by
(4.6) F(z) = f({a1,2),...,{an, z)),
where {a;} is a complete orthonormal set in L, ,[0,T]. Then

N 2
(4.7) 1= / Fx)— > Al @mnmn (@)| dp(z) =0

Ca,b[ovT]

mi,...,mp=0

as N — 00.

Theorem 4.6. Let L be the set of all functionals F' which has the form (4.6)
above. Then L is dense in La(Cqp[0,T]).

Proof. By the usual Lebesgue argument, it suffices to show that the character-
istic functional can be represented by linear combination of elements of £. For
O=to<t1<---<t, <T,let I ={x e Cupl0,T]:a; <xz(t;) <G} Then

() = [T Xioy 1 a(t)

For given ¢ > 0 and j =1,...,n, define a trapezoid function Z; . by
0 if s € (—o00,a5 —¢)
i(s—a;)+1 if sefaj—e,aj)
Zje(s) = 1 if s € oy, G5]
fé(sfﬂj)Jrl if s € (85, 0; + €
0 if s € (B +¢€,00).

Let C.(z) =[['—, Zj.(x(tj)). Then C:(z) — xr(x) as € | 0. Next, let

Jj=1
i (t) = X[o,1,1(1)-
o0 m
Then we write that g;(¢t) = > bja;(t). Let Gjm(t) = > bjicq(t). Then
=1 =1

||9j - Gj,m||a,b — 0 as m — oo.

Thus we obtain that
<Gj,ma $> - <gj7x>
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in the La(C, 5[0, T1]) sense as m — oo. Thus there exists a subsequence {G; m, }
of {G; } such that

<G”j,m;C ) LTJ> - <gj7 l‘>
as k — oo for a.e. © € Cyp[0,T). Let S x(x) =[1—; Zj,c({Gjmy,x)). Then

n

Sen(z) = [] Zie(gjr2))
j=1
as k — oo for a.e. x € Cy[0,T]. Thus S; y(x) — Ce(z) in the La(Cy 5[0, T])
sense as k — oco. But S, ;(x) is an element of £. Hence we complete the proof
as desired. 0O

Remark 4.7. Note, we have shown above for F' given by equation (4.6), that
A(m,,...,my) given by (4.5) is zero for k > n and my > 0. Hence the number of
subscripts on ® and A in (4.7) may be increased beyond n without changing
the sum. Hence we may take N > n subscripts in (4.7) and thus for any F
given by (4.6),

N 2
/ F@) = Y AR B (@)] diu(z) = 0
Ca,b[ofT]

ml,...,mN=O
as N — oo. That is to say,

N
(4.8) F(z) = lim Z Al ) @l (),

N—oo
mi,...,mn=0

and the right-hand side of (4.8) is called the generalized Fourier-Hermite series
of F.

Theorem 4.6 above, together with Remark 4.7, tell us that every F €
L3(Cap[0,T]) has a convergent generalized Fourier-Hermite series expansion.
This observation plays a key role in Section 5 below.

Corollary 4.8. Let F be an any functional on Cg [0, T] with
[ F@Pdue) < .
Cavb[O,T]

and for N =1,2,..., let
N
(49) FN(CL’) = Z A{‘ml,...,mN)(I)(TI’Ll,...,mN) (1’)

mi,...,mN=0

Then

(4.10) /C @)~ F@)Pautz) 0
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as N — oo and

F(z) = lim Fn(z)

N —o0
(4.11) _ N .
= ]\}Enoo Z A(m1,m,mN)cI)(ml,mymN)(x)

mi,...,mn=0

is called the generalized Fourier-Hermite series expansion of F.

5. The generalized Fourier-Wiener function space transforms

In this section we obtain a formula for the generalized Fourier-Wiener func-
tion space transform of the generalized Fourier-Hermite function. We then
proceed to obtain formula for the generalized Fourier-Wiener function space
transform of a functional F' in Ly(Cy [0, T1).

Let K, [0,T] be the set of all complex-valued continuous functions x(t)
defined on [0, T'] which vanish at ¢ = 0 and whose real and imaginary parts are
elements of C, [0, T]; namely,

K.p[0,T)={z:[0,T] = C | 2(0) =0, Re(x),Im(z) € Ca[0,T]}.
Then C, [0, 7] is a subspace of all real-valued functions in K, ;[0, T].

Definition 5.1. Let F be a functional defined on K, [0, T]. The generalized
Fourier-Wiener function space transform F. \/ii(F ) of F' is defined by

(51)  FF) = /C L FOR ),y e K0T

if it exists.
Remark 5.2. When a(t) = 0 and b(t) = ¢ on [0,T], the generalized Fourier-

Wiener function space transform is the modified Fourier-Wiener transform in-
troduced by Cameron and Martin in [3].

Throughout this paper, in order to ensure that various integrals exist, we will
assume that § = ¢ + id is a nonzero complex number satisfying the inequality

(5.2) Re(1-p*) =1+d*>—-c>0.

We note that Re(1 — 32) = 1+ d? — ¢2 > 0 if and only if the point (c,d) € R?
lies in the open region determined by the hyperbola c? — d? = 1 containing the
d-axis. Hence, for all || < 1,3 # 41 and Re(1 — 8%) > 0. Let v = /1 — 32
with —% < arg(y) < I so that 4? + 3% = 1 and Re(7?) = Re(1 — %) > 0.

The following lemma plays a key role in finding the generalized integral
transform of functionals given by equation (4.4).
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Lemma 5.3. Let § = ¢+ id be a nonzero complex number with f # +1,

satisfying inequality (5.2) and lety = \/1 — 32. Then for \ € R,n=0,1,2,...,
and j =1,2,...,

/HJ exp{ 1B ( ()xﬂJr’ij))Q}du

Proof. Since Hi(u) is a polynomial of degree n, B; > 0 and Re(y?) > 0, the
integral in (5.3) exists and

I = /HJ exp{ 1B( ()\ﬂJr'ij))Q}du
.exp{_ﬁ(u — (B + fij))2}du

— (_1)"(71!)—%31? exp{ﬁ((ﬁ)\ +74;) - Aj)Q}

B[, (BA+rA) =124\ @ (u—4y)°
Jeolamm ) Fs o e

Next, integrating by parts n times, we obtain that

(5.3)

1 n 1
I, =n!)"2B; exp{m((ﬂAJr’YAj) - AJ’)Q}
J

d 3 (BA+74)) =74 (v—4))
./Rdu—”<exp{_2’ygBj <u— 672 7> )cxp{— 2B, }du

d" B (BA+74)) =74\ (u—4;)
'JJAWPW&@— a— w% i)

= (n) 2B} (-B)" eXP{

—A;
ar 1 2
o (/ReXp{i?ﬂBj {uf (BA+ 4, } }duexp{ 7L, { BA+4;) — A } })
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wf3

= B ()" exv{ g (7 +95) - 4,

: C;% (’y\/ﬁexp{ﬁ {(6/\+7Aj) - AaT})

= (n!)%B}(_m”exp{ﬁ((m +A;) — Aj)
~7\/FBJC;% <exp{#3j {(6/\+7Aj) Ajr>

- (n!)éBJ%(ﬂ)”exp{QiBj(()\ + %Aj) - %Aj)Q}
B (e[ 2 2]

. -1
= g™\ /202 B, I ()\ + %Aj)

which is complete the proof of Lemma 5.3. O

Remark 5.4. Equation (5.3) actually holds for each A € C since ﬁ{ﬁj (u) is a
’U47Aj

polynomial of degree m; in and thus both sides of equation (5.3) are

J

analytic functions of A throughout C.

Lemma 5.5. Let § =i and v = /2. Then 3 and v satisfying the hypothesis
of Lemma 5.3. For each positive integer j, let m; be a nonnegative integer, and

let ©(m, () = ﬁ%j((aj,:E}). Then for each y € K,[0,T], the generalized
Fourier-Wiener function space transform .7-"\/571.(@(”” ) (y) exists and is given
by the formula
F im0 W) = Foy i (H ) (g, 9)
s V2+i-1
(5.4 = im i, (g + )
=" HJ, ((aj,y> —i(V2+i-— 1)Aj).

Proof. Using equation (5.1), formula (4.3), equation (5.3) with A = (a;,y) and
n = my, it follows that

Fz.i(m, )W) = Fom i (Hp, ) (0, 9))

- / 13, (V3. 3) + 0, 4)) du(z)
Ca,[0,T]

Aﬁ;j(ﬁuj +i(aj,y>)exp{—%}duj

N|=

= (27B;)
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-

L \2
= ) [, G+ e e A b,

2
= (2mv°B;) _%/HJ eXp{—(v(MO;:gyBZ,JFWAj)) }dv
J
_ BMN/2my? By < 4 y+6—-1 )
= amen, T\l A

= mith, (g + 54,

N V2+i-1
=1 JHgnj (<O[j,y> -+ fA])

=™ Hj, <<aj,y> —i(V24i— 1)Aj).

O

Next, applying Lemma 5.5 N times, we obtain a formula for generalized
Fourier-Wiener function space transform of the generalized Fourier-Hermite
functionals @, . my)-

Theorem 5.6. Let N be a positive integer, for each j =1,...,N, let m; be a
nonnegative integer, and let

N
(55) q)(ml, 7mN) H Sa(mj,j) H H] Oéja

Then for each y € Kq[0,T], the generalized Fourier-Wiener function space
transform F 5 (P (m,....mn))(y) exists and is given by the formula

(5.6)

F i (@my,oma))(¥) = F oz 4 H (o, y

_ gty H i, <<aj,y> —i(V2+i- 1)Aj)

N
— H]-‘@i(ﬁfgj)(@j,y»

In the special cases a(t) = 0 and b(t) = t on [0,7], the function space
Cap[0,T] reduces to the Wiener space Cy[0,T] because A; = 0 and B; = 1 for
all j =1,2,.... Hence many of the results in [1-4] are corollaries of the results
in this paper. In particular:

Corollary 5.7. Let ®(,,, . my) be given by (5.5). Then
F i @my,ma))(y) = ™80 (), y € Ko[0, T
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and
||‘7:\/§,i(q)(m17»»»,mN))||2 =1

Definition 5.8. Let F' € L2(C,[0,T]) be given and let (4.11) be its Fourier-
Hermite series expansion with F defined by (4.9) satisfying condition (4.10).

Then we define the generalized Fourier-Wiener function space transform
F j5i(F) of F' to be

67 FP)@) = Jim Fp(Fo)(e), @€ Capl0,T]

if it exists; that is to say if

(5.8) lim F 5 (F) (@) = F s i (Fx) (2) *dp(x) = 0.

N—oo Ca,b[O,T]
The following theorem is one of our main results.

Theorem 5.9. Let F € Ly(Cyp[0,T]) be given by equation (4.11) with the
generalized Fourier-Hermite coefficients of F given by equation (4.5). Then the
generalized Fourier-Wiener function space transform fﬁZ(F) of F exists and
is an element of L2(Cqp[0,T]) if and only if

N
. F 2
ngnoo Z |A(m17~-~,mN)|

mi,...,mn=0

N

H /Ca,b[O,T]

j=1

(5.9)

), <<aj, z) —i(V2+i— 1)Aj> Qdu(m) < 0.

Furthermore if (5.9) holds, then the generalized Fourier-Hermite series expan-
sion of F 5 ,(F) is given by

Foai(F)(x) = lim F 5 ,(Fy)(z)

N—>oo
with
N
Fyz,i(FN)(2) D Al T

mi,.. 7mN_O

HHJ (aj, i(V2+i—1)A )

Z (mh 7mN)]:[‘F\/§'L a]’ >)

mi,...,mN=0

for each x € Cq[0,T] and each N =1,2,.. ..
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Proof. First assume that F 5 ,(F) exists and is an element of Ly(Cq [0, T]).
For any € > 0 we have that

/ F o (F) (@) — F g (F) (@) Pdple) < e
Cq 10,7

for all sufficiently large N. Hence for N sufficiently large,

(> .. \2H/

mi,...,mn=0

= [|Fya,(Fn)ll2
<N FaiEMe2 + 1 F s (F) = Fm i (Fn)ll2
< | Fyz(F)ll2 + €

1

2du( )) ’

(a], z) —i(V2+i—1)A )

Ca,p[0,T]

and thus by condition (5.9) holds.
To proof the converse, suppose that condition (5.9) holds. For integers M
and N with M > N > 1, let

IM:{(m1,...,mM):ml,...,mM:O,l,...,M}
and let
Iy ={(my,....,mp) :mq,....,my=0,1,...,N and my41 = --- = mpr = 0}.
Then it follows that
/ |‘7:ﬁ,i(FM)(x) - fﬁ,i(FN)(:E)qu(x)
Cq 5[0,T]
- / Z A(ml, ,mM)ZmlJr.“erM
Canl0,7]1;
) 2
H (0@, ) —i(V2+i—1)A ) dp(x)
2
= Z AF jmatetmar
(ma,...,mar)
In—1IN
M - 2
j:1 Ca,b[ovT]
M 2
= D | AGu i
mi,...,mp=0
M - 2
H/ Hy,, <<O<j,x> —i(vV2+i- 1)Aj) dp(z)
- Cq p[0,T]

Jj=1
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N

-

ml,...,mN=O

2

F ymi+-+my
A(ml,...,mN)Z

N

H La,b[ovT]

j=1

du(z)

i, <<aj,x> —i(V24i— 1)Aj)

which goes to 0 as M, N — oco. Hence {f\@,i(FN)}?VO:l is a Cauchy sequence
in Ly(Cy 5[0, T]) and since La(Cy [0, T]) is complete,

FaiB)a) = Jm Fp (Fw)@), 2 € Copl0.T]
exists and is an element of Ly(C, [0, T]). O

Remark 5.10. The main result in [10], namely Theorem 6 on page 1385, as well
as the main results of [3], namely Theorem 1 on page 103, follows immediately
from Theorem 5.9 above by choosing a(t) = 0 and b(t) = ¢ on [0,T], and 8 =1

and v = /2.

Corollary 5.11. Suppose that condition (5.9) holds. If a(t) =0 on [0,T], then
N

IFzEE= Jim > JAG, nlP =IFI3.
ml,“‘,mN:O
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