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GENERALIZED FOURIER-WIENER FUNCTION SPACE

TRANSFORMS

Seung Jun Chang and Hyun Soo Chung

Abstract. In this paper, we define generalized Fourier-Hermite func-
tionals on a function space Ca,b[0, T ] to obtain a complete orthonormal
set in L2(Ca,b[0, T ]) where Ca,b[0, T ] is a very general function space.
We then proceed to give a necessary and sufficient condition that a func-
tional F in L2(Ca,b[0, T ]) has a generalized Fourier-Wiener function space
transform F√

2,i
(F ) also belonging to L2(Ca,b[0, T ]).

1. Introduction

Let C0[0, T ] denote one-parameter Wiener space, that is the space of real-
valued continuous function x on [0, T ] with x(0) = 0. The concept of the
Fourier-Wiener transforms was introduced by Cameron and Martin in [2]. In
[3], the authors defined a modified Fourier-Wiener transform and gave vari-
ous relationships for the modified Fourier-Wiener transform of functionals in
L2(C0[0, T ]). For these works, in [4], using the Wiener measure on C0[0, T ] and
completeness properties of the Hermite polynomials on R, they introduced a
complete orthonormal set in L2(C0[0, T ]) and gave a Fourier development for
functionals in L2(C0[0, T ]) which converges in the L2(C0[0, T ]).

The function space Ca,b[0, T ] induced by generalized Brownian motion was
introduced by J. Yea in [16] and was used extensively by Chang and Chung [7].
In this paper, we extend the results of [1-4] to a very general function space
Ca,b[0, T ] rather than the Wiener space C0[0, T ]. The Wiener process used in
[1-6, 10] is stationary in time and is free of drift while the stochastic process
used in this paper as well as in [7-9], in nonstationary in time, is subject to a
drift a(t), and can be used to explain the position of the Ornstein-Uhlenbeck
process in an external force field [14]. However, when a(t) ≡ 0 and b(t) = t

on [0, T ], the general function space Ca,b[0, T ] reduces to the Wiener space
C0[0, T ].
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2. Definitions and preliminaries

Let D = [0, T ] and let (Ω,B, P ) be a probability measure space. A real-
valued stochastic process Y on (Ω,B, P ) and D is called a generalized Brownian

motion process if Y (0, ω)=0 almost everywhere and for 0 = t0 < t1 < · · · <

tn ≤ T , the n-dimensional random vector (Y (t1, ω), . . . , Y (tn, ω)) is normally
distributed with density function

(2.1)

Wn(~t, ~η) =
(

(2π)n
n

∏

j=1

(b(tj) − b(tj−1))
)−1/2

· exp

{

−1

2

n
∑

j=1

((ηj − a(tj)) − (ηj−1 − a(tj−1)))
2

b(tj) − b(tj−1)

}

,

where ~η = (η1, . . . , ηn), η0 = 0, ~t = (t1, . . . , tn), a(t) is an absolutely continuous
real-valued function on [0, T ] with a(0) = 0, a′(t) ∈ L2[0, T ] and b(t) is a strictly
increasing continuously differentiable real-valued function with b(t) > 0 and
b′(t) > 0 for each t ∈ [0, T ].

As explained in [15, pp. 18–20], Y induces a probability measure µ on the
measurable space (RD,BD), where RD is the space of all real valued functions
x(t), t ∈ D, and BD is the smallest σ-algebra of subsets of RD with respect to
which all the coordinate evaluation maps et(x) = x(t) defined on R

D are mea-
surable. The triple (RD,BD, µ) is a probability measure space. This measure
space is called the function space induced by the generalized Brownian motion
process Y determined by a(·) and b(·).

We note that the generalized Brownian motion process Y determined by a(·)
and b(·) is a Gaussian process with mean function a(t) and covariance function
r(s, t) = min{b(s), b(t)}. By Theorem 14.2 [15, p. 187], the probability measure
µ induced by Y , taking a separable version, is supported by Ca,b[0, T ] (which is
equivalent to the Banach space of continuous functions x on [0, T ] with x(0) = 0
under the sup norm). Hence (Ca,b[0, T ],B(Ca,b[0, T ]), µ) is the function space
induced by Y , where B(Ca,b[0, T ]) is the Boreal σ-algebra of Ca,b[0, T ].

A subset B of Ca,b[0, T ] is said to be scale-invariant measurable provided
ρB is B(Ca,b[0, T ])-measurable for all ρ > 0, and a scale-invariant measurable
set N is said to be a scale-invariant null set provided µ(ρN) = 0 for all ρ > 0.
A property that holds except on a scale-invariant null set is said to hold scale-
invariant almost everywhere(s-a.e.). If two functionals F and G are equal
scale-invariant almost everywhere, we write F ≈ G.

Let L2
a,b[0, T ] be the Hilbert space of functions on [0, T ] which are Lebesgue

measurable and square integrable with respect to the Lebesgue Stieltjes mea-
sures on [0, T ] induced by a(·) and b(·); i.e.,

(2.2) L2
a,b[0, T ] =

{

v :

∫ T

0

v2(s)db(s) < ∞ and

∫ T

0

v2(s)d|a|(s) < ∞
}

,

where |a|(t) denotes the total variation of the function a on the interval [0, t].
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For u, v ∈ L2
a,b[0, T ], let

(2.3) (u, v)a,b =

∫ T

0

u(t)v(t)d[b(t) + |a|(t)].

Then (·, ·)a,b is an inner product on L2
a,b[0, T ] and ‖u‖a,b =

√

(u, u)a,b is a norm

on L2
a,b[0, T ]. In particular, note that ‖u‖a,b = 0 if and only if u(t) = 0 a.e. on

[0, T ]. Furthermore (L2
a,b[0, T ], ‖ · ‖a,b) is a separable Hilbert space. Note that

all functions of bounded variation on [0, T ] are elements of L2
a,b[0, T ]. Also note

that if a(t) ≡ 0 and b(t) = t on [0, T ], then L2
a,b[0, T ] = L2[0, T ]. In fact,

(L2
a,b[0, T ], || · ||a,b) ⊂ (L2

0,b[0, T ], || · ||0,b) = (L2[0, T ], || · ||2)

since the two norms || · ||0,b and || · ||2 are equivalent.
Let {φj}∞j=1 be a complete orthonormal set of real-valued functions of bound-

ed variation on [0, T ] such that

(φj , φk)a,b =

{

0, j 6= k

1, j = k,

and for each v ∈ L2
a,b[0, T ], let

(2.4) vn(t) =

n
∑

j=1

(v, φj)a,bφj(t)

for n = 1, 2, . . .. Then for each v ∈ L2
a,b[0, T ], the Palely-Wiener-Zygmund

(PWZ) stochastic integral 〈v, x〉 is defined by the formula

(2.5) 〈v, x〉 = lim
n→∞

∫ T

0

vn(t)dx(t)

for all x ∈ Ca,b[0, T ] for which the limit exists; one can show that for each
v ∈ L2

a,b[0, T ], the PWZ integral 〈v, x〉 exists for µ-a.e. x ∈ Ca,b[0, T ].
Followings are some facts about the PWZ stochastic integral.

(1) For each v ∈ L2
a,b[0, T ], the PWZ integral 〈v, x〉 exists for µ-a.e. x ∈

Ca,b[0, T ].
(2) The PWZ integral 〈v, x〉 is essentially independent of the complete

orthonormal set {φj}∞j=1.

(3) If v is of bounded variation on [0, T ], then the PWZ integral 〈v, x〉
equals the Riemann-Stieltjes integral

∫ T

0 v(t)dx(t) for s-a.e. x∈Ca,b[0, T ].
(4) The PWZ integral has the expected linearity properties.
(5) For all v ∈ L2

a,b[0, T ], 〈v, x〉 is a Gaussian random variable with mean
∫ T

0 v(s)da(s) and variance
∫ T

0 v2(s)db(s).
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We denote the function space integral of a B(Ca,b[0, T ])-measurable func-
tional F by

(2.6) E[F ] =

∫

Ca,b[0,T ]

F (x)dµ(x)

whenever the integral exists.

3. Complete orthonormal sets in L2(R) and L2(R
n)

In this section, we define generalized normalizing Hermite functions. We use
them to obtain a complete orthonormal set in L2(R) and L2(R

n).

Definition 3.1. For each m = 0, 1, . . . and t ∈ [0, T ], we define a generalized

Hermite polynomial in u−a(t)√
b(t)

of degree m by

(3.1)

Hm(u; t) ≡ (−1)m
(

b(t)
)

m
2 exp

{

(

u − a(t)
)2

2b(t)

}

dm

dum

(

exp

{

−
(

u − a(t)
)2

2b(t)

})

.

For examples, we see that

H0(u; t) = 1, H1(u; t) =
u − a(t)
√

b(t)
and H2(u; t) = −1 +

(

u − a(t)
√

b(t)

)2

.

We note that for each m = 0, 1, . . . and t ∈ [0, T ],

Hm+1(u; t) =

(

u − a(t)
√

b(t)

)

Hm(u; t) −
(

b(t)
)

1
2 H ′

m(u; t),

where ′ means d
du . And for each m = 1, 2, . . . and t ∈ [0, T ],

Hm+1(u; t) −
(

u − a(t)
√

b(t)

)

Hm(u; t) + mHm−1(u; t) = 0

and so

(3.2) H ′
m(u; t) =

m
√

b(t)
Hm−1(u; t).

Lemma 3.2. For any nonnegative integers m and k,

(3.3)

I ≡
∫

R

exp

{

−
(

u − a(t)
)2

2b(t)

}

Hk(u; t)Hm(u; t)du

=

{

0 if k 6= m

k!
√

2πb(t) if k = m.

Proof. Assume that m ≤ k. Let

ϕ(u; t) = exp

{

−
(

u − a(t)
)2

2b(t)

}

.
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Then

exp

{

−
(

u − a(t)
)2

2b(t)

}

Hk(u; t) = (−1)k
(

b(t)
)

k
2 ϕ(k)(u; t).

By using this above, we obtain that

I ≡ (−1)k
(

b(t)
)

k
2

∫

R

ϕ(k)(u; t)Hm(u; t)du.

By using integration by parts formulas, we obtain that

I ≡ (−1)k
(

b(t)
)

k
2

[

ϕ(k−1)(u; t)Hm(u; t)

∣

∣

∣

∣

∞

−∞

−
∫

R

ϕ(k−1)(u; t)H ′
m(u; t)du

]

= (−1)k+1
(

b(t)
)

k
2

∫

R

ϕ(k−1)(u; t)H ′
m(u; t)du.

Continuing on this manner, we obtain that

I = (−1)k+m
(

b(t)
)

k
2

∫

R

ϕ(k−m)(u; t)H(m)
m (u; t)du.

But if m < k, then I = 0. If k = m, then by using equation (3.2) above,

I = (−1)2k
(

b(t)
)

k
2

∫

R

k!

b(t)
k
2

exp

{

−
(

u − a(t)
)2

2b(t)

}

du

= k!

∫

R

exp

{

−
(

u − a(t)
)2

2b(t)

}

du

= k!
√

2πb(t)

which completes the proof of Lemma 3.2. �

We are ready to define generalized Hermite functions and a sequence of
generalized normalizing Hermite functions {Km}∞m=0 which is a complete or-
thonormal set in L2(R).

Definition 3.3. For each m = 0, 1, . . . and t ∈ [0, T ], we define a generalized
Hermite function of degree m by

hm(u; t) ≡ Hm(u; t) exp

{

−
(

u − a(t)
)2

4b(t)

}

and we define a generalized normalizing Hermite function of degree m by

(3.4) Km(u; t) ≡
(

m!
√

2πb(t)
)− 1

2 hm(u; t).

Now, we are ready to obtain a complete orthonormal set in L2(R).

Theorem 3.4. The set of functions {Km}∞m=0 defined by (3.4) is an orthonor-

mal set in L2(R).
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Proof. By using equation (3.3) above, it immediately follows that for all non-
negative integers k and m,

∫

R

Kk(u; t)Km(u; t)du

=

∫

R

(

k!
√

2πb(t)
)− 1

2 hk(u; t)
(

m!
√

2πb(t)
)− 1

2 hm(u; t)du

=
(

k!
√

2πb(t)
)− 1

2
(

m!
√

2πb(t)
)− 1

2

∫

R

Hk(u; t)Hm(u; t) exp

{

−
(

u − a(t)
)2

2b(t)

}

du

= δk,m. �

Theorem 3.5. The set {Km}∞m=0 is a complete orthonormal set in L2(R).

Proof. For each m = 0, 1, . . . and f ∈ L2(R), assume that
∫

R

Km(u; t)f(u)du = 0.

It suffices to show that f = 0 a.e.. Let

g(u) = exp

{

−
(

u − a(t)
)2

4b(t)

}

f(u)

for u ∈ R. Then g ∈ L1(R) and so the Fourier transform

F (z) ≡
∫

R

exp{izu}g(u)du

exists for all z ∈ C. Also 1√
2π

F |R is the inverse Fourier transform of g. Thus

if F (z) ≡ 0, then by uniqueness of the inverse Fourier transform, g = 0 and so
f = 0 a.e. on R.

Since F is an entire function, we can write

F (z) =

∞
∑

n=0

bnzn,

where bn = F (n)(0)
n! . But

F (n)(z) =

∫

R

(iu)n exp

{

izu −
(

u − a(t)
)2

4b(t)

}

f(u)du

and F (n)(0) = 0 and hence bn = 0 for all n and so F (z) = 0. �

Definition 3.6. For each j = 1, 2, . . ., let mj be a nonnegative integer. For
(u1, . . . , un) ∈ Rn, let

(3.5) K(m1,...,mn)(u1, . . . , un; t) ≡
n

∏

j=1

Kmj
(uj ; t),

where Kmj
(uj; t) is given by equation (3.4) above.
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In our next theorem, we also give a complete orthonormal set in L2(R
n).

Theorem 3.7. The set of generalized normalizing Hermite functions

{K(m1,...,mn)}∞m1,...,mn=0

is a complete orthonormal set in L2(R
n).

Proof. By using Theorem 3.4 and the fact that the set of functions of the
form {f1f2 · · · fn : fj ∈ L2(R), j = 1, . . . , n} is dense in L2(R

n), we obtain the
desired result. �

Definition 3.8. For each g ∈ L2(R
n), the generalized Hermite coefficient

of g with respect to the complete orthonormal set {K(m1,...,mn)}∞m1,...,mn=0 is
defined by the formula

(3.6)

a
g
(m1,...,mn) ≡

∫

Rn

g(~u)K(m1,...,mn)(~u; t)d~u

=

∫

Rn

g(~u)

( n
∏

j=1

Kmj
(uj ; t)

)

d~u.

Remark 3.9. By Theorem 3.7, it follows that

g(u1, . . . , un) = lim
N→∞

N
∑

m1,...,mn=0

a
g
(m1,...,mn)

n
∏

j=1

Kmj
(uj ; t);

that is to say that

∫

Rn

∣

∣

∣

∣

g(~u) −
N

∑

m1,...,mn=0

a
g
(m1,...,mn)

n
∏

j=1

Kmj
(uj ; t)

∣

∣

∣

∣

2

d~u

goes to zero as N → ∞.

4. A complete orthonormal set in L2(Ca,b[0, T ])

In this section, we define the generalized Fourier-Hermite coefficient and the
generalized Fourier-Hermite functionals. We then obtain a complete orthonor-
mal set in L2(Ca,b[0, T ]).

The following notations are used throughout this paper:

(4.1) Aj ≡
∫ T

0

αj(t)da(t)

and

(4.2) Bj ≡
∫ T

0

α2
j (t)db(t),
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where {αj} is a complete orthonormal set in L2
a,b[0, T ]. We note that for each

j = 1, 2, . . .,

0 < Bj =

∫ T

0

α2
j (t)db(t) ≤

∫ T

0

α2
j (t)d[b(t) + |a|(t)] = ||αj ||2a,b = 1,

while Aj may be positive, negative or zero. We also note that if a(t) ≡ 0 on
[0, T ], then Aj = 0 and Bj = 1 for each j = 1, 2, . . ..

The following integration formula used several times throughout this paper:

Let {α1, . . . , αn} be an orthonormal set of functions from (L2
a,b[0, T ], ‖·‖a,b).

Let h : Rn → R be Lebesgue measurable and let H(x) = h(〈α1, x〉, . . . , 〈αn, x〉).
Then

(4.3)

∫

Ca,b[0,T ]

H(x)dµ(x) =

( n
∏

j=1

2πBj

)− 1
2

∫

Rn

h(u1, . . . , un)

· exp

{

−
n

∑

j=1

(uj − Aj)
2

2Bj

}

du1 · · · dun

in the sense that if either side exists, both sides exist and equality holds.
Using formula (4.3) we observe that E[〈αj , x〉] = Aj , E[〈αj , x〉2] = Bj + A2

j

and that Var(〈αj , x〉) = Bj for each j = 1, . . . , n.
Also note that the complete orthonormal set {α1, α2, . . .} in L2

a,b[0, T ] is
completely at our disposal. For example, we could choose the αj ’s to the
continuous and of bounded variation on [0, T ], or we could choose the αj ’s to
the Haar functions on [0, T ], etc.

To obtain a complete orthonormal set in L2(Ca,b[0, T ]), we define a gener-
alized Hermite polynomial and a generalized normalizing Hermite function as
below.

Definition 4.1. For each m = 0, 1, . . . and for each j = 1, 2, . . ., we define a
generalized Hermite polynomial by

H̃j
m(u) ≡ (−1)m(m!)−

1
2 (Bj)

m
2 exp

{

(u − Aj)
2

2Bj

}

dm

dum

(

exp

{

− (u − Aj)
2

2Bj

})

and we define a generalized normalizing Hermite polynomial by

K̃j
m(u) ≡ (2πBj)

− 1
4 H̃j

m(u) exp

{

− (u − Aj)
2

4Bj

}

,

where Aj and Bj are as in equations (4.1) and (4.2) above respectively.

Remark 4.2. (1) If a(t) ≡ 0 on [0, T ], then for all j = 1, 2, . . ., Aj = 0 and

Bj = 1. In case, H̃j
m and K̃j

m are defined independently of j’s.
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(2) We can easily see that for each j = 1, 2, . . ., {K̃j
m}∞m=0 is a complete or-

thonormal set in L2(R). Furthermore, for all j = 1, . . . , n, let mj be a nonneg-

ative integer. Then the set {K̃(1,...,n)
(m1,...,mn)}∞m1,...,mn=0 is a complete orthonormal

set in L2(R
n), where K̃

(1,...,n)
(m1,...,mn)(~u) =

∏n
j=1 K̃j

mj
(uj).

(3) For each positive integer k and nonnegative integer m, let

ϕ(m,k)(x) ≡ H̃k
m(〈αk, x〉).

For each j = 1, . . . , k, let mj be a nonnegative integer. Let

(4.4)

Φ(m1,...,mk)(x) ≡ ϕ(m1,1)(x)ϕ(m2,2)(x) · · ·ϕ(mk,k)(x)

=

k
∏

j=1

H̃j
mj

(〈αk, x〉).

The functionals in equation (4.4) are called the generalized Fourier-Hermite
functionals on Ca,b[0, T ].

The three assertions in the following statements follow by easily from Re-
mark 4.2:

(1) ϕ(0,k)(x) ≡ 1 for all positive integer k.
(2) Φ(m1,...,mk)(x) = Φ(m1,...,mk,0,...,0)(x) for all positive integer k.
(3) Inserting zeroes to the left of a non-zero entry in Φ change the values of

Φ.

Theorem 4.3. The set of functionals M ≡ {Φ(m1,...,mk)}∞k=1 is an orthonor-

mal set in L2(Ca,b[0, T ]).

Proof. By using formula (4.3) above, it follows that
∫

Ca,b[0,T ]

Φ(m1,...,mk)(x)Φ(n1,...,nk)(x)dµ(x)

=

∫

Ca,b[0,T ]

[ k
∏

j=1

H̃j
mj

(〈αj , x〉)
][ k

∏

j=1

H̃j
nj

(〈αj , x〉)
]

dµ(x)

=

( k
∏

j=1

2πBj

)− 1
2

∫

Rk

[ k
∏

j=1

H̃j
mj

(uj)

][ k
∏

j=1

H̃j
nj

(uj)

]

exp

{

−
k

∑

j=1

(

uj − Aj

)2

2Bj

}

du1 · · · duk

=

∫

Rk

[ k
∏

j=1

K̃j
mj

(uj)

][ k
∏

j=1

K̃j
nj

(uj)

]

du1 · · ·duk

= δm1,n1δm2,n2 · · · δmk,nk
.

�

In order to show that the set of functionals M in Theorem 4.3 is complete we
will show that every functional F in L2(Ca,b[0, T ]) has a generalized Fourier-
Hermite series expansion in terms of the functionals in M.
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Definition 4.4. For each F ∈ L2(Ca,b[0, T ]) and Φ(m1,...,mk) ∈ M, the gener-
alized Fourier-Hermite coefficient of F is defined by

(4.5) AF
(m1,...,mk) ≡

∫

Ca,b[0,T ]

F (x)Φ(m1,...,mk)(x)dµ(x).

Lemma 4.5. For ~u = (u1, . . . , un) ∈ Rn, let f(~u) be a measurable function

such that

f(~u) exp

{

−
n

∑

j=1

(

uj − Aj

)2

4Bj

}

∈ L2(R
n).

Let F : Ca,b[0, T ] → R be a functional defined by

(4.6) F (x) = f
(

〈α1, x〉, . . . , 〈αn, x〉
)

,

where {αj} is a complete orthonormal set in L2
a,b[0, T ]. Then

(4.7) I ≡
∫

Ca,b[0,T ]

∣

∣

∣

∣

F (x) −
N

∑

m1,...,mn=0

AF
(m1,...,mn)Φ(m1,...,mn)(x)

∣

∣

∣

∣

2

dµ(x) → 0

as N → ∞.

Theorem 4.6. Let L be the set of all functionals F which has the form (4.6)
above. Then L is dense in L2(Ca,b[0, T ]).

Proof. By the usual Lebesgue argument, it suffices to show that the character-
istic functional can be represented by linear combination of elements of L. For
0 = t0 < t1 < · · · < tn ≤ T , let I = {x ∈ Ca,b[0, T ] : αj ≤ x(tj) ≤ βj}. Then

χI(x) =

n
∏

j=1

χ[αj,βj ](x(tj)).

For given ε > 0 and j = 1, . . . , n, define a trapezoid function Zj,ǫ by

Zj,ε(s) =































0 if s ∈ (−∞, αj − ε)
1
ε (s − αj) + 1 if s ∈ [αj − ε, αj)

1 if s ∈ [αj , βj]

− 1
ε (s − βj) + 1 if s ∈ (βj , βj + ε]

0 if s ∈ (βj + ε,∞).

Let Cε(x) ≡
∏n

j=1 Zj,ε(x(tj)). Then Cε(x) → χI(x) as ε ↓ 0. Next, let

gj(t) ≡ χ[0,tj ](t).

Then we write that gj(t) ≡
∞
∑

l=1

bj,lαl(t). Let Gj,m(t) ≡
m
∑

l=1

bj,lαl(t). Then

||gj − Gj,m||a,b → 0 as m → ∞.

Thus we obtain that

〈Gj,m, x〉 → 〈gj , x〉
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in the L2(Ca,b[0, T ]) sense as m → ∞. Thus there exists a subsequence {Gj,mk
}

of {Gj,m} such that

〈Gj,mk
, x〉 → 〈gj , x〉

as k → ∞ for a.e. x ∈ Ca,b[0, T ]. Let Sε,k(x) ≡ ∏n
j=1 Zj,ε(〈Gj,mk

, x〉). Then

Sε,k(x) →
n

∏

j=1

Zj,ε(〈gj , x〉)

as k → ∞ for a.e. x ∈ Ca,b[0, T ]. Thus Sε,k(x) → Cε(x) in the L2(Ca,b[0, T ])
sense as k → ∞. But Sε,k(x) is an element of L. Hence we complete the proof
as desired. �

Remark 4.7. Note, we have shown above for F given by equation (4.6), that
A(m1,...,mk) given by (4.5) is zero for k > n and mk > 0. Hence the number of

subscripts on Φ and AF in (4.7) may be increased beyond n without changing
the sum. Hence we may take N > n subscripts in (4.7) and thus for any F

given by (4.6),

∫

Ca,b[0,T ]

∣

∣

∣

∣

F (x) −
N

∑

m1,...,mN=0

AF
(m1,...,mN )Φ(m1,...,mN )(x)

∣

∣

∣

∣

2

dµ(x) → 0

as N → ∞. That is to say,

(4.8) F (x) = lim
N→∞

N
∑

m1,...,mN=0

AF
(m1,...,mN )Φ(m1,...,mN )(x),

and the right-hand side of (4.8) is called the generalized Fourier-Hermite series
of F .

Theorem 4.6 above, together with Remark 4.7, tell us that every F ∈
L2(Ca,b[0, T ]) has a convergent generalized Fourier-Hermite series expansion.
This observation plays a key role in Section 5 below.

Corollary 4.8. Let F be an any functional on Ca,b[0, T ] with
∫

Ca,b[0,T ]

|F (x)|2dµ(x) < ∞,

and for N = 1, 2, . . ., let

(4.9) FN (x) =

N
∑

m1,...,mN=0

AF
(m1,...,mN )Φ(m1,...,mN)(x).

Then

(4.10)

∫

Ca,b[0,T ]

|FN (x) − F (x)|2dµ(x) → 0
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as N → ∞ and

(4.11)

F (x) = lim
N→∞

FN (x)

= lim
N→∞

N
∑

m1,...,mN=0

AF
(m1,...,mN )Φ(m1,...,mN )(x)

is called the generalized Fourier-Hermite series expansion of F .

5. The generalized Fourier-Wiener function space transforms

In this section we obtain a formula for the generalized Fourier-Wiener func-
tion space transform of the generalized Fourier-Hermite function. We then
proceed to obtain formula for the generalized Fourier-Wiener function space
transform of a functional F in L2(Ca,b[0, T ]).

Let Ka,b[0, T ] be the set of all complex-valued continuous functions x(t)
defined on [0, T ] which vanish at t = 0 and whose real and imaginary parts are
elements of Ca,b[0, T ]; namely,

Ka,b[0, T ] = {x : [0, T ] → C | x(0) = 0, Re(x), Im(x) ∈ Ca,b[0, T ]} .

Then Ca,b[0, T ] is a subspace of all real-valued functions in Ka,b[0, T ].

Definition 5.1. Let F be a functional defined on Ka,b[0, T ]. The generalized
Fourier-Wiener function space transform F√

2,i(F ) of F is defined by

(5.1) F√
2,i(F )(y) =

∫

Ca,b[0,T ]

F (
√

2x + iy)dµ(x), y ∈ Ka,b[0, T ]

if it exists.

Remark 5.2. When a(t) ≡ 0 and b(t) = t on [0, T ], the generalized Fourier-
Wiener function space transform is the modified Fourier-Wiener transform in-
troduced by Cameron and Martin in [3].

Throughout this paper, in order to ensure that various integrals exist, we will
assume that β = c + id is a nonzero complex number satisfying the inequality

(5.2) Re(1 − β2) = 1 + d2 − c2 > 0.

We note that Re(1 − β2) = 1 + d2 − c2 > 0 if and only if the point (c, d) ∈ R2

lies in the open region determined by the hyperbola c2 − d2 = 1 containing the

d-axis. Hence, for all |β| ≤ 1, β 6= ±1 and Re(1 − β2) > 0. Let γ =
√

1 − β2

with −π
4 < arg(γ) < π

4 so that γ2 + β2 = 1 and Re(γ2) = Re(1 − β2) > 0.

The following lemma plays a key role in finding the generalized integral
transform of functionals given by equation (4.4).
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Lemma 5.3. Let β = c + id be a nonzero complex number with β 6= ±1,

satisfying inequality (5.2) and let γ =
√

1 − β2. Then for λ ∈ R, n = 0, 1, 2, . . .,

and j = 1, 2, . . .,

(5.3)

∫

R

H̃j
n(u) exp

{

− 1

2γ2Bj

(

u − (λβ + γAj)
)2

}

du

= βn
√

2πγ2BjH̃
j
n

(

λ +
γ + β − 1

β
Aj

)

.

Proof. Since H̃j
n(u) is a polynomial of degree n, Bj > 0 and Re(γ2) > 0, the

integral in (5.3) exists and

In ≡
∫

R

H̃j
n(u) exp

{

− 1

2γ2Bj

(

u − (λβ + γAj)
)2

}

du

= (−1)n(n!)−
1
2 B

n
2

j

∫

R

exp

{

(

u − Aj

)2

2Bj

}

dn

dun

(

exp

{

−
(

u − Aj

)2

2Bj

})

· exp

{

− 1

2γ2Bj

(

u − (λβ + γAj)
)2

}

du

= (−1)n(n!)−
1
2 B

n
2

j exp

{

1

2β2Bj

(

(βλ + γAj) − Aj

)2
}

·
∫

R

exp

{

− β2

2γ2Bj

(

u − (βλ + γAj) − γ2Aj

β2

)2} dn

dun

(

exp

{

−
(

u − Aj

)2

2Bj

})

du.

Next, integrating by parts n times, we obtain that

In = (n!)−
1
2 B

n
2

j exp

{

1

2β2Bj

(

(βλ + γAj) − Aj

)2
}

·
∫

R

dn

dun

(

exp

{

− β2

2γ2Bj

(

u − (βλ + γAj) − γ2Aj

β2

)2})

exp

{

−
(

u − Aj

)2

2Bj

}

du

= (n!)−
1
2 B

n
2

j (−β)n exp

{

1

2β2Bj

(

(βλ + γAj) − Aj

)2
}

·
∫

R

dn

dλn

(

exp

{

− β2

2γ2Bj

(

u − (βλ + γAj) − γ2Aj

β2

)2})

exp

{

−
(

u − Aj

)2

2Bj

}

du

= (n!)−
1
2 B

n
2

j (−β)n exp

{

1

2β2Bj

(

(βλ + γAj) − Aj

)2
}

· dn

dλn

(
∫

R

exp

{

− β2

2γ2Bj

(

u − (βλ + γAj) − γ2Aj

β2

)2}

exp

{

−
(

u − Aj

)2

2Bj

}

du

)

= (n!)−
1
2 B

n
2

j (−β)n exp

{

1

2β2Bj

(

(βλ + γAj) − Aj

)2
}

· dn

dλn

(
∫

R

exp

{

− 1

2γ2Bj

[

u − (βλ + γAj)

]2}

du exp

{

− 1

2β2Bj

[

(βλ + γAj) − Aj

]2})
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= (n!)−
1
2 B

n
2

j (−β)n exp

{

1

2β2Bj

(

(βλ + γAj) − Aj

)2
}

· dn

dλn

(

γ
√

2πBj exp

{

− 1

2β2Bj

[

(βλ + γAj) − Aj

]2})

= (n!)−
1
2 B

n
2

j (−β)n exp

{

1

2β2Bj

(

(βλ + γAj) − Aj

)2
}

· γ
√

2πBj
dn

dλn

(

exp

{

− 1

2β2Bj

[

(βλ + γAj) − Aj

]2)

= (n!)−
1
2 B

n
2
j (−β)n exp

{

1

2Bj

(

(λ +
γ

β
Aj) −

1

β
Aj

)2
}

· γ
√

2πBj
dn

dλn

(

exp

{

− 1

2Bj

[

(λ +
γ

β
Aj) −

1

β
Aj

]2)

= βn
√

2πγ2BjH̃
j
n

(

λ +
γ + β − 1

β
Aj

)

which is complete the proof of Lemma 5.3. �

Remark 5.4. Equation (5.3) actually holds for each λ ∈ C since H̃j
mj

(u) is a

polynomial of degree mj in
u−Aj√

Bj

and thus both sides of equation (5.3) are

analytic functions of λ throughout C.

Lemma 5.5. Let β = i and γ =
√

2. Then β and γ satisfying the hypothesis

of Lemma 5.3. For each positive integer j, let mj be a nonnegative integer, and

let ϕ(mj ,j)(x) = H̃j
mj

(〈αj , x〉). Then for each y ∈ Ka,b[0, T ], the generalized

Fourier-Wiener function space transform F√
2,i(ϕ(mj ,j))(y) exists and is given

by the formula

(5.4)

F√
2,i(ϕ(mj ,j))(y) = F√

2,i(H̃
j
mj

)(〈αj , y〉)

= imjH̃j
mj

(

〈αj , y〉 +

√
2 + i − 1

i
Aj

)

= imjH̃j
mj

(

〈αj , y〉 − i(
√

2 + i − 1)Aj

)

.

Proof. Using equation (5.1), formula (4.3), equation (5.3) with λ = 〈αj , y〉 and
n = mj , it follows that

F√
2,i(ϕ(mj ,j))(y) = F√

2,i(H̃
j
mj

)(〈αj , y〉)

=

∫

Ca,b[0,T ]

H̃j
mj

(
√

2〈αj , x〉 + i〈αj , y〉
)

dµ(x)

=
(

2πBj

)− 1
2

∫

R

H̃j
mj

(
√

2uj + i〈αj , y〉) exp

{

− (uj − Aj)
2

2Bj

}

duj
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=
(

2πBj

)− 1
2

∫

R

H̃j
mj

(γuj + β〈αj , y〉) exp

{

− (uj − Aj)
2

2Bj

}

duj

=
(

2πγ2Bj

)− 1
2

∫

R

H̃j
mj

(v) exp

{

−
(

v − (β〈αj , y〉 + γAj)
)2

2γ2Bj

}

dv

=
βmj

√

2πγ2Bj
√

2πγ2Bj

H̃j
mj

(

〈αj , y〉 +
γ + β − 1

β
Aj

)

= βmj H̃j
mj

(

〈αj , y〉 +
γ + β − 1

β
Aj

)

= imj H̃j
mj

(

〈αj , y〉 +

√
2 + i − 1

i
Aj

)

= imj H̃j
mj

(

〈αj , y〉 − i(
√

2 + i − 1)Aj

)

.
�

Next, applying Lemma 5.5 N times, we obtain a formula for generalized
Fourier-Wiener function space transform of the generalized Fourier-Hermite
functionals Φ(m1,...,mN).

Theorem 5.6. Let N be a positive integer, for each j = 1, . . . , N , let mj be a

nonnegative integer, and let

(5.5) Φ(m1,...,mN)(x) ≡
N
∏

j=1

ϕ(mj ,j)(x) =

N
∏

j=1

H̃j
mj

(〈αj , x〉).

Then for each y ∈ Ka,b[0, T ], the generalized Fourier-Wiener function space

transform F√
2,i(Φ(m1,...,mN ))(y) exists and is given by the formula

F√
2,i(Φ(m1,...,mN ))(y) = F√

2,i(

N
∏

j=1

H̃j
mj

)(〈αj , y〉)

(5.6)

= im1+···+mN

N
∏

j=1

H̃j
mj

(

〈αj , y〉 − i(
√

2 + i − 1)Aj

)

=

N
∏

j=1

F√
2,i(H̃

j
mj

)(〈αj , y〉).

In the special cases a(t) ≡ 0 and b(t) = t on [0, T ], the function space
Ca,b[0, T ] reduces to the Wiener space C0[0, T ] because Aj = 0 and Bj = 1 for
all j = 1, 2, . . .. Hence many of the results in [1-4] are corollaries of the results
in this paper. In particular:

Corollary 5.7. Let Φ(m1,...,mN ) be given by (5.5). Then

F√
2,i(Φ(m1,...,mN ))(y) = im1+···+mN Φ(m1,...,mN )(y), y ∈ K0[0, T ]
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and

‖F√
2,i(Φ(m1,...,mN ))‖2 = 1.

Definition 5.8. Let F ∈ L2(Ca,b[0, T ]) be given and let (4.11) be its Fourier-
Hermite series expansion with FN defined by (4.9) satisfying condition (4.10).
Then we define the generalized Fourier-Wiener function space transform
F√

2,i(F ) of F to be

(5.7) F√
2,i(F )(x) = lim

N→∞
F√

2,i(FN )(x), x ∈ Ca,b[0, T ]

if it exists; that is to say if

(5.8) lim
N→∞

∫

Ca,b[0,T ]

|F√
2,i(F )(x) −F√

2,i(FN )(x)|2dµ(x) = 0.

The following theorem is one of our main results.

Theorem 5.9. Let F ∈ L2(Ca,b[0, T ]) be given by equation (4.11) with the

generalized Fourier-Hermite coefficients of F given by equation (4.5). Then the

generalized Fourier-Wiener function space transform F√
2,i(F ) of F exists and

is an element of L2(Ca,b[0, T ]) if and only if

(5.9)

lim
N→∞

N
∑

m1,...,mN=0

|AF
(m1,...,mN )|2

·
N
∏

j=1

∫

Ca,b[0,T ]

∣

∣

∣

∣

H̃j
mj

(

〈αj , x〉 − i(
√

2 + i − 1)Aj

)∣

∣

∣

∣

2

dµ(x) < ∞.

Furthermore if (5.9) holds, then the generalized Fourier-Hermite series expan-

sion of F√
2,i(F ) is given by

F√
2,i(F )(x) = lim

N→∞
F√

2,i(FN )(x)

with

F√
2,i(FN )(x) =

N
∑

m1,...,mN=0

AF
(m1,...,mN )i

m1+···+mN

·
N
∏

j=1

H̃j
mj

(

〈αj , x〉 − i(
√

2 + i − 1)Aj

)

=

N
∑

m1,...,mN=0

AF
(m1,...,mN )

N
∏

j=1

F√
2,i(H̃

j
mj

)(〈αj , x〉)

for each x ∈ Ca,b[0, T ] and each N = 1, 2, . . ..
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Proof. First assume that F√
2,i(F ) exists and is an element of L2(Ca,b[0, T ]).

For any ǫ > 0 we have that
∫

Ca,b[0,T ]

|F√
2,i(F )(x) −F√

2,i(FN )(x)|2dµ(x) < ǫ

for all sufficiently large N . Hence for N sufficiently large,

( N
∑

m1,...,mN=0

|AF
(m1,...,mN )|2

N
∏

j=1

∫

Ca,b[0,T ]

∣

∣

∣

∣

H̃j
mj

(

〈αj , x〉 − i(
√

2 + i − 1)Aj

)∣

∣

∣

∣

2

dµ(x)

)
1
2

= ‖F√
2,i(FN )‖2

≤ ‖F√
2,i(F )‖2 + ‖F√

2,i(F ) −F√
2,i(FN )‖2

≤ ‖F√
2,i(F )‖2 + ǫ

and thus by condition (5.9) holds.
To proof the converse, suppose that condition (5.9) holds. For integers M

and N with M > N ≥ 1, let

IM = {(m1, . . . , mM ) : m1, . . . , mM = 0, 1, . . . , M}

and let

IN = {(m1, . . . , mM ) : m1, . . . , mN = 0, 1, . . . , N and mN+1 = · · · = mM = 0}.

Then it follows that
∫

Ca,b[0,T ]

|F√
2,i(FM )(x) −F√

2,i(FN )(x)|2dµ(x)

=

∫

Ca,b[0,T ]

∣

∣

∣

∣

∑

IM−IN

AF
(m1,...,mM)i

m1+···+mM

·
M
∏

j=1

H̃j
mj

(

〈αj , x〉 − i(
√

2 + i − 1)Aj

)∣

∣

∣

∣

2

dµ(x)

=
∑

IM−IN

∣

∣

∣

∣

AF
(m1,...,mM)i

m1+···+mM

∣

∣

∣

∣

2

·
M
∏

j=1

∫

Ca,b[0,T ]

∣

∣

∣

∣

H̃j
mj

(

〈αj , x〉 − i(
√

2 + i − 1)Aj

)∣

∣

∣

∣

2

dµ(x)

=

M
∑

m1,...,mM=0

∣

∣

∣

∣

AF
(m1,...,mM )i

m1+···+mM

∣

∣

∣

∣

2

·
M
∏

j=1

∫

Ca,b[0,T ]

∣

∣

∣

∣

H̃j
mj

(

〈αj , x〉 − i(
√

2 + i − 1)Aj

)∣

∣

∣

∣

2

dµ(x)
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−
N

∑

m1,...,mN=0

∣

∣

∣

∣

AF
(m1,...,mN )i

m1+···+mN

∣

∣

∣

∣

2

·
N
∏

j=1

∫

Ca,b[0,T ]

∣

∣

∣

∣

H̃j
mj

(

〈αj , x〉 − i(
√

2 + i − 1)Aj

)∣

∣

∣

∣

2

dµ(x)

which goes to 0 as M, N → ∞. Hence {F√
2,i(FN )}∞N=1 is a Cauchy sequence

in L2(Ca,b[0, T ]) and since L2(Ca,b[0, T ]) is complete,

F√
2,i(F )(x) = lim

N→∞
F√

2,i(FN )(x), x ∈ Ca,b[0, T ]

exists and is an element of L2(Ca,b[0, T ]). �

Remark 5.10. The main result in [10], namely Theorem 6 on page 1385, as well
as the main results of [3], namely Theorem 1 on page 103, follows immediately
from Theorem 5.9 above by choosing a(t) ≡ 0 and b(t) = t on [0, T ], and β = i

and γ =
√

2.

Corollary 5.11. Suppose that condition (5.9) holds. If a(t) ≡ 0 on [0, T ], then

‖F√
2,i(F )‖2

2 = lim
N→∞

N
∑

m1,...,mN=0

|AF
(m1,...,mN )|2 = ‖F‖2

2.
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