• Title/Summary/Keyword: T-S Fuzzy

Search Result 414, Processing Time 0.029 seconds

Fuzzy modelling for design of ship's autopilot (선박 자동조타기 설계를 위한 퍼지모델링)

  • Ahn, Jong-Kap;Lee, Chang-Ho;Lee, Yun-Hyung;Son, Jung-Ki;Lee, Soo-Lyong;So, Myung-Ok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.1
    • /
    • pp.102-108
    • /
    • 2010
  • The T-S fuzzy model of a ship is made from the nonlinear extension of Nomoto's 2nd-order model as the previous step before designing of the fuzzy type autopilot to consider the design specifications and the economic efficiency. The T-S fuzzy model is considered as a design variable of the heading angular velocity of ship. The linear models will be combined as "IF-THEN" fuzzy rules after get in this one area of the linear model(sub-system) by change of the heading angular velocity of a ship. The dynamic characteristic of a ship with the parameters of linear models and fuzzy membership functions are estimated to match by using the model adjustment technic with input/output data and a RCGA.

Decentralized Dynamic Output Feedback Controller for Discrete-time Nonlinear Interconnected Systems via T-S Fuzzy Models (이산 시간 비선형 상호 결합 시스템의 T-S 퍼지 모델을 위한 분산 동적 출력 궤한 제어기 설계)

  • Koo, Geun-Bum;Kim, Jin-Kyu;Joo, Young-Hoon;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.6
    • /
    • pp.780-785
    • /
    • 2007
  • This paper proposes the decentralized dynamic output feedback controller for discrete-time nonlinear interconnected systems using Takagi-Sugeno (T-S) fuzzy model. Through T-S fuzzy model of each subsystem, the decentralized dynamic output feedback controller is designed. By the closed-loop subsystems with controller, it represents the linear matrix inequality (LMI) for stability of whole interconnected system. The value of control gain are obtained by LMI. An example is given to show the experimentally verification discussed throughout the paper.

Sampled-data Fuzzy Controller for Network-based Systems with Neutral Type Delays (뉴트럴 타입 시간 지연을 갖는 네트워크 기반 시스템의 샘플치 퍼지 제어기 설계)

  • Joo, Young-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.2
    • /
    • pp.151-156
    • /
    • 2008
  • This paper presents the stability analysis and design for a sampled-data fuzzy control system with neutral type of time delay, which is formed by a nonlinear plant and a sampled-data fuzzy controller connected in a closed loop. The sampling activity and neutral type of time delay will complicate the system dynamics and make the stability analysis much more difficult than that for a pure continuous-time fuzzy control system. Based on the fuzzy-model-based control approach, LMI(linear matrix inequality)-based stability conditions are derived to guarantee the nonlinear networked system stability. An application example will be given to show the merits and design a procedure of the proposed approach.

L-gained State Feedback Control for Continuous Fuzzy Systems with Time-Delay (시간 지연 연속 시간 퍼지 시스템에 대한 L-이득값 상태 궤환 제어)

  • Lee, Dong-Hwan;Joo, Young-Hoon;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.6
    • /
    • pp.762-767
    • /
    • 2008
  • This paper introduces a $L_{\infty}$-gain state feedback fuzzy controller design for the time delay nonlinear system represented by Takagi-Sugeno(T-S) fuzzy model. First, the T-S fuzzy model is employed to represent the time delay nonlinear system. Next based on the fuzzy model, a fuzzy state feedback controller is developed to achieve $L_{\infty}$-gain performance. Finally, sufficient conditions are derived for $L_{\infty}$-gain performance. The sufficient conditions are formulated in the format of linear matrix inequalities (LMIs). The effectiveness of the proposed controller design methonology is finally demonstrated through numerical simulations.

Observer-based H Fuzzy Controller Design of Interval Type-2 Takagi-Sugeno Fuzzy Systems Under Imperfect Premise Matching (불완전한 전반부 정합 하에서의 관측기 기반 구간 2형 T-S 퍼지 시스템의 H 퍼지 제어기 설계)

  • Hwang, Sounghwan;Park, Jin Bae;Joo, Young Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.11
    • /
    • pp.1620-1627
    • /
    • 2017
  • In this paper, we design an observer-based $H_{\infty}$ fuzzy controller for interval type-2 Takagi-Sugeno (T-S) fuzzy systems under imperfect premise matching. The designed observer-based controller can effectively estimate the state of the system and make fuzzy system satisfy the $H_{\infty}$ disturbance attenuation performance. Using the slack matrix, the derived stabilization condition is expressed in terms of a linear matrix inequality. Finally, the effectiveness of the proposed method is verified through a simulation example.

Design of T-S Fuzzy-Model-Based Controller for Control of Autonomous Underwater Vehicles (무인 잠수정의 심도 제어를 위한 T-S 퍼지 모델 기반 제어기 설계)

  • Jun, Sung-Woo;Kim, Do-Wan;Lee, Ho-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.3
    • /
    • pp.302-306
    • /
    • 2011
  • This paper presents Takagi-Sugeno (T-S) fuzzy-model-based controller for depth control of autonomous underwater vehicles(AUVs). Through sector nonlinearity methodology, The nonlinear AUV is represented by T-S fuzzy model. By using the Lyapunov function, the design condition of controller is derived to guarantee the performance of depth control in the format of linear matrix inequality (LMI). An example is provided to illustrate the effectiveness of the proposed methodology.

Takagi-Sugeno Fuzzy Sampled-data Filter for Nonlinear System (비선형 시스템을 위한 Takagi-Sugeno 퍼지 샘플치필터)

  • Kim, Ho Jun;Park, Jin Bae;Joo, Young Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.4
    • /
    • pp.349-354
    • /
    • 2015
  • This paper presents the stability conditions of the Takagi-Sugeno (T-S) fuzzy sampled-data filter. The error system between the T-S fuzzy system and fuzzy filter is presented. In the sense of the Lyapunov stability analysis, the stability conditions are given, which can be represented in terms of linear matrix inequalities (LMIs). The proposed stability conditions utilize the different approach from the conventional methods, and have better performance than that of the conventional ones. The simulation example is given to show the effectiveness of the proposed method.

Design of Intelligent Controller with Time Delay for Internet-Based Remote Control (인터넷 기반 원격제어를 위한 임의의 시간지연을 갖는 지능형 제어기의 설계)

  • Joo, Young-Hoon;Kim, Jung-Chan;Lee, Oh-Jae;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.3
    • /
    • pp.293-299
    • /
    • 2003
  • This paper discusses a design of intelligent controller with time delay for Internet-based remote control. The finite Markovian process is adopted to model the input delay of the overall control system. It is assumed that the zero and hold devices are used for control input. The Takagi-Sugeno (T-S) fuzzy system with uncertain input delay is utilized to represent nonlinear plant. The continuous-time T-S fuzzy system with the Markovian input delay is discretized for easy handling delay, accordingly, the discretized T-S fuzzy system is represented by a discrete-time T-S fuzzy system with jumping parameters. The robust stochastic stabilizibility of the jump T-S fuzzy system is derived and formulated in terms of linear matrix inequalities (LMIs). An experimental results is provided to visualize the feasibility of the proposed method.

On-line Parameter Estimator Based on Takagi-Sugeno Fuzzy Models

  • Park, Chang-Woo;Hyun, Chang-Ho;Park, Mignon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.5
    • /
    • pp.481-486
    • /
    • 2002
  • In this paper, a new on-line parameter estimation methodology for the general continuous time Takagi-Sugeno(T-5) fuzzy model whose parameters are poorly known or uncertain is presented. An estimator with an appropriate adaptive law for updating the parameters is designed and analyzed based on the Lyapunov theory. The adaptive law is designed so that the estimation model follows the plant parameterized model. By the proposed estimator, the parameters of the T-S fuzzy model can be estimated by observing the behavior of the system and it can be a basis for the indirect adaptive fuzzy control. Based on the derived design method, the parameter estimation for controllable canonical T-S fuzzy model is also Presented.