• 제목/요약/키워드: T subset

검색결과 267건 처리시간 0.025초

ON FUZZY BI-IDEALS IN SEMIGROUPS

  • Chon, Inheung
    • Korean Journal of Mathematics
    • /
    • 제19권3호
    • /
    • pp.321-330
    • /
    • 2011
  • We characterize the fuzzy bi-ideal generated by a fuzzy subset in a semigroup and the fuzzy bi-ideal generated by a fuzzy subset A such that $A{\subseteq}A^2$ in a semigroup with an identity element. Our work generalizes the characterization of fuzzy bi-ideals by Mo and Wang ([8]).

THE FORCING NONSPLIT DOMINATION NUMBER OF A GRAPH

  • John, J.;Raj, Malchijah
    • Korean Journal of Mathematics
    • /
    • 제29권1호
    • /
    • pp.1-12
    • /
    • 2021
  • A dominating set S of a graph G is said to be nonsplit dominating set if the subgraph ⟨V - S⟩ is connected. The minimum cardinality of a nonsplit dominating set is called the nonsplit domination number and is denoted by ��ns(G). For a minimum nonsplit dominating set S of G, a set T ⊆ S is called a forcing subset for S if S is the unique ��ns-set containing T. A forcing subset for S of minimum cardinality is a minimum forcing subset of S. The forcing nonsplit domination number of S, denoted by f��ns(S), is the cardinality of a minimum forcing subset of S. The forcing nonsplit domination number of G, denoted by f��ns(G) is defined by f��ns(G) = min{f��ns(S)}, where the minimum is taken over all ��ns-sets S in G. The forcing nonsplit domination number of certain standard graphs are determined. It is shown that, for every pair of positive integers a and b with 0 ≤ a ≤ b and b ≥ 1, there exists a connected graph G such that f��ns(G) = a and ��ns(G) = b. It is shown that, for every integer a ≥ 0, there exists a connected graph G with f��(G) = f��ns(G) = a, where f��(G) is the forcing domination number of the graph. Also, it is shown that, for every pair a, b of integers with a ≥ 0 and b ≥ 0 there exists a connected graph G such that f��(G) = a and f��ns(G) = b.

Effect of Peripheral Blood CD4 + CD25 + Regulatory T Cell on Postoperative Immunotherapy for Patients with Renal Carcinoma

  • Zhang, Chao-Hua;Huang, Yan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권4호
    • /
    • pp.2027-2030
    • /
    • 2016
  • Objective: To investigate the effect of peripheral blood CD4 + CD25 + regulatory T cell on postoperative immunotherapy in patients with renal carcinoma. Methods: 38 patients with renal cell carcinoma were recruited, and 20 patients from the operation group purely underwent the radical nephrectomy therapy, 18 patients from the combined group successively underwent the radical nephrectomy therapy and IFN-${\alpha}$ adjuvant immunotherapy. Additionally, 12 healthy subjects were recruited in the same period of time and regarded as the control group. Flow cytometry was used to detect CD4 +, CD8 +, CD4 + CD25+ T lymphocyte subset content and the ratio of all parts in the pre-operative period, in the first post-operative week and in the third post-operative month, compare and analyze its variation trend. Results: The CD4+CD25+ T lymphocyte subset content of individual renal carcinoma patients was significantly higher than that of the control group, also increases with the progression in the tumor stage (P<0.05). The post-operative CD4 + CD25+T lymphocytes of individual operation group and combined group patients showed different degrees of increment, but the increment of the combined group was significantly lower than that of the operation group (P<0.05). For the combined group patients with less pre-operative CD4 + CD25+T lymphocytes, their levels would increase after the immunotherapy, while the pre-operative patients with more CD4 + CD25+ T lymphocytes were the opposite situation. Conclusion: The detection of peripheral blood CD4+CD25+ regulatory T lymphocyte subset can reflect the anti-tumor immune status of renal cell carcinoma patient body. It can contribute to predict the prognosis of immunotherapy and provide reference for the choice of renal carcinoma post-operative adjuvant immunotherapy.

A Bayesian Method for Narrowing the Scope of Variable Selection in Binary Response Logistic Regression

  • Kim, Hea-Jung;Lee, Ae-Kyung
    • 품질경영학회지
    • /
    • 제26권1호
    • /
    • pp.143-160
    • /
    • 1998
  • This article is concerned with the selection of subsets of predictor variables to be included in bulding the binary response logistic regression model. It is based on a Bayesian aproach, intended to propose and develop a procedure that uses probabilistic considerations for selecting promising subsets. This procedure reformulates the logistic regression setup in a hierarchical normal mixture model by introducing a set of hyperparameters that will be used to identify subset choices. It is done by use of the fact that cdf of logistic distribution is a, pp.oximately equivalent to that of $t_{(8)}$/.634 distribution. The a, pp.opriate posterior probability of each subset of predictor variables is obtained by the Gibbs sampler, which samples indirectly from the multinomial posterior distribution on the set of possible subset choices. Thus, in this procedure, the most promising subset of predictors can be identified as that with highest posterior probability. To highlight the merit of this procedure a couple of illustrative numerical examples are given.

  • PDF

STRONG CONVERGENCE OF COMPOSITE ITERATIVE METHODS FOR NONEXPANSIVE MAPPINGS

  • Jung, Jong-Soo
    • 대한수학회지
    • /
    • 제46권6호
    • /
    • pp.1151-1164
    • /
    • 2009
  • Let E be a reflexive Banach space with a weakly sequentially continuous duality mapping, C be a nonempty closed convex subset of E, f : C $\rightarrow$C a contractive mapping (or a weakly contractive mapping), and T : C $\rightarrow$ C a nonexpansive mapping with the fixed point set F(T) ${\neq}{\emptyset}$. Let {$x_n$} be generated by a new composite iterative scheme: $y_n={\lambda}_nf(x_n)+(1-{\lambda}_n)Tx_n$, $x_{n+1}=(1-{\beta}_n)y_n+{\beta}_nTy_n$, ($n{\geq}0$). It is proved that {$x_n$} converges strongly to a point in F(T), which is a solution of certain variational inequality provided the sequence {$\lambda_n$} $\subset$ (0, 1) satisfies $lim_{n{\rightarrow}{\infty}}{\lambda}_n$ = 0 and $\sum_{n=0}^{\infty}{\lambda}_n={\infty}$, {$\beta_n$} $\subset$ [0, a) for some 0 < a < 1 and the sequence {$x_n$} is asymptotically regular.

CURVES WITH MAXIMAL RANK, BUT NOT ACM, WITH VERY HIGH GENERA IN PROJECTIVE SPACES

  • Ballico, Edoardo
    • 대한수학회지
    • /
    • 제56권5호
    • /
    • pp.1355-1370
    • /
    • 2019
  • A curve $X{\subset}\mathbb{P}^r$ has maximal rank if for each $t{\in}\mathbb{N}$ the restriction map $H^0(\mathcal{O}_{\mathbb{P}r}(t)){\rightarrow}H^0(\mathcal{O}_X(t))$ is either injective or surjective. We show that for all integers $d{\geq}r+1$ there are maximal rank, but not arithmetically Cohen-Macaulay, smooth curves $X{\subset}\mathbb{P}^r$ with degree d and genus roughly $d^2/2r$, contrary to the case r = 3, where it was proved that their genus growths at most like $d^{3/2}$ (A. Dolcetti). Nevertheless there is a sector of large genera g, roughly between $d^2/(2r+2)$ and $d^2/2r$, where we prove the existence of smooth curves (even aCM ones) with degree d and genus g, but the only integral and non-degenerate maximal rank curves with degree d and arithmetic genus g are the aCM ones. For some (d, g, r) with high g we prove the existence of reducible non-degenerate maximal rank and non aCM curves $X{\subset}\mathbb{P}^r$ with degree d and arithmetic genus g, while (d, g, r) is not realized by non-degenerate maximal rank and non aCM integral curves.

A Bayesian Method for Narrowing the Scope fo Variable Selection in Binary Response t-Link Regression

  • Kim, Hea-Jung
    • Journal of the Korean Statistical Society
    • /
    • 제29권4호
    • /
    • pp.407-422
    • /
    • 2000
  • This article is concerned with the selecting predictor variables to be included in building a class of binary response t-link regression models where both probit and logistic regression models can e approximately taken as members of the class. It is based on a modification of the stochastic search variable selection method(SSVS), intended to propose and develop a Bayesian procedure that used probabilistic considerations for selecting promising subsets of predictor variables. The procedure reformulates the binary response t-link regression setup in a hierarchical truncated normal mixture model by introducing a set of hyperparameters that will be used to identify subset choices. In this setup, the most promising subset of predictors can be identified as that with highest posterior probability in the marginal posterior distribution of the hyperparameters. To highlight the merit of the procedure, an illustrative numerical example is given.

  • PDF

REMARK ON A SEGAL-LANGEVIN TYPE STOCHASTIC DIFFERENTIAL EQUATION ON INVARIANT NUCLEAR SPACE OF A Γ-OPERATOR

  • Chae, Hong Chul
    • Korean Journal of Mathematics
    • /
    • 제8권2호
    • /
    • pp.163-172
    • /
    • 2000
  • Let $\mathcal{S}^{\prime}(\mathbb{R})$ be the dual of the Schwartz spaces $\mathcal{S}(\mathbb{R})$), A be a self-adjoint operator in $L^2(\mathbb{R})$ and ${\Gamma}(A)^*$ be the adjoint operator of ${\Gamma}(A)$ which is the second quantization operator of A. It is proven that under a suitable condition on A there exists a nuclear subspace $\mathcal{S}$ of a fundamental space $\mathcal{S}_A$ of Hida's type on $\mathcal{S}^{\prime}(\mathbb{R})$) such that ${\Gamma}(A)\mathcal{S}{\subset}\mathcal{S}$ and $e^{-t{\Gamma}(A)}\mathcal{S}{\subset}\mathcal{S}$, which enables us to show that a stochastic differential equation: $$dX(t)=dW(t)-{\Gamma}(A)^*X(t)dt$$, arising from the central limit theorem for spatially extended neurons has an unique solution on the dual space $\mathcal{S}^{\prime}$ of $\mathcal{S}$.

  • PDF

STRONG HYPERCYCLICITY OF BANACH SPACE OPERATORS

  • Ansari, Mohammad;Hedayatian, Karim;Khani-Robati, Bahram
    • 대한수학회지
    • /
    • 제58권1호
    • /
    • pp.91-107
    • /
    • 2021
  • A bounded linear operator T on a separable infinite dimensional Banach space X is called strongly hypercyclic if $$X{\backslash}\{0\}{\subseteq}{\bigcup_{n=0}^{\infty}}T^n(U)$$ for all nonempty open sets U ⊆ X. We show that if T is strongly hypercyclic, then so are Tn and cT for every n ≥ 2 and each unimodular complex number c. These results are similar to the well known Ansari and León-Müller theorems for hypercyclic operators. We give some results concerning multiplication operators and weighted composition operators. We also present a result about the invariant subset problem.