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Abstract

This article is concerned with the selection of subsets of predictor variables to be
included in building the binary response logistic regression model. It is based on a
Bayesian approach, intended to propose and develop a procedure that uses
probabilistic considerations for selecting promising subsets. This procedure
reformulates the logistic regression setup in a hierarchical normal mixture model
by introducing a set of hyperparameters that will be used to identify subset
choices. It is done by use of the fact that cdf of logistic distribution is
approximately equivalent to that of #4/.634 distribution. The appropriate posterior
probability of each subset of predictor variables is obtained by the Gibbs sampler,
which samples indirectly from the multinomial posterior distribution on the set of
possible subset choices. Thus, in this procedure, the most promising subset of
predictors can be identified as that with highest posterior probability. To highlight
the merit of this procedure a couple of illustrative numerical examples are given.

1. Introduction

A vast literature in quality management, statistics, and biometrics is concerned
with the analysis of binary response data. When the dependent variable of a
regression model is observed to be qualitative variable expressed as binary output,
we may consider a model given by

Y,‘zH(X,"B) + 6’,“ . (1)
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where Y; is a binary output, X, is a px 1 predictor vector, B8 is a vector of
unknown coefficients and ¢,’s are uncorrelated with E(e;) =0, i=1,:,n,
respectively. Here H(-) is a known cdf linking the probabilities p;,= Pr(¥Y;=1)
with the linear structure X, B8, so that p;= H(X, B). In particular, when the

link cdf H(-) (having linking function H '(-)) is taken to be the cdf of the
logistic distribution, the model is called linear logistic regression model. The model
is discussed extensively in Nelder and McCullagh(1989) and Collett(1991).

At some point during the analysis with the logistic regression model, one may
wish to delete some predictors from the model. The search for a best submodel is
called variable selection or subset selection. Some reasons for the variable
selection are (a) to express the relationship between the binary response and the
predictors as simple as possible; (b) to identify important and negligible predictors;
or {(c) to increase the precision of statistical estimates and predictions. A wide
variety of selection procedures based on a comparison of all 2° possible
submodels have been proposed, including AIC, BIC, and the marginal likelihood
criterion by Chip(1995). It is well known that, in case p is large, the
computational requirements for these procedures can be prohibitive. To mitigate
the computational burden, one may use heuristic methods to restrict attention to a
smaller number of potential subsets. Based on this idea, the stepwise procedures
have been suggested, such as forward selection or backward elimination, which
sequentially include or exclude variables based on the deviance considerations (cf.
Collett 1991),

The purpose of this article is to develop and suggest a variable selection
procedure that avoids the overwhelming comparison of all 2? possible submodels
for the logistic regression model. The procedure selects potentially promising
subsets of the predictor variables, x,,-,x,, so that it may narrow the scope of

possible models for further considerations. This procedure, initiated by George and
McCulloch(1993), is based on a synthesis of the hierarchical Bayes modeling (cf.
Mitchell and Beauchamp 1988) and Gibbs sampling (cf. Casella and George 1992):
The procedure reformulates the logistic regression setup in a hierarchical normal
mixture model by introducing a set of hyperparameters that will be used to
identify subset choices. Then the appropriate posterior probability of each subset
of predictor varniables is obtained by means of the Gibbs sampler, which samples
indirectly from the multinomial posterior distribution on the set of possible subset
choices. Consequently, the most promising subset of predictors with highest
posterior probability can then be identified by its most frequent appearance in the
Gibbs sample.
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In Section 2 we define and motivate the hierarchical framework for the logistic
regression model that serves as the basis for the stochastic search variable
selection. In Section 3 we show how the hierarchical model can be used to
identify highly promising logistic regression models via the Gibbs sampler. In
Section 4 we illustrate the suggested procedure on both simulated and a real data
sets.

2. A Hierarchical Model for Variable Selection

Suppose that we have » binary response observations Y, i=1,-,n, where
E(Y;)=p; which is the success probability corresponding to the :-th observation.
The binary response logistic regression model for the dependence of p;, on »

explanatory variables vector, X;= (xy;, x5, ", %,;) is
logit (p;) = log(p;/(1—p)) = B’ X, i=1,-",m, (2)

where B= (8, --.8,) is an unknown coefficient vector. As a result of some

arrangement,

exp(B8°X,)
l+exp(B X))’

Since Y; is an observation from a Bernoulli distribution with mean p;, corre-

bi = (3)

sponding model for the expected value of y;, is E(Y;)=exp(8 X;)/(l+exp
(B X,)). For the model (2), selecting a subset of predictors is equivalent to
setting to O those gB;’s corresponding to the unselected predictors. Afterwards, we
shall assume that zx,, --,x, contains no variable that would be included in every

possible model. If an intercept was to be included in the variable selection (as is
usually the case), then one should set x,;, =1,i=1,, #n.

The likelihood function of the model (2) is given by
= Hpla-s'", )

where p; is defined by (3). This likelihood depends on the unknown success
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probabilities p;, which in turn depends on the A through (3), so that the

likelihood function may be regarded as a function of 8.

To extract information relevant to variable selection, we consider the following
hierarchical model structure (cf. Bernardo and Smith 1994). In conventional
terminology, the first stage of the hierarchy relates data to parameters via (4).

The key feature of this hierarchical model is that each component of B's modeled
as having come from a mixture of two normal distribution with different
variances.

Thus the second stage models can be simply expressed via the introduction of a

set of distinct hyperparameters {a; = 0 or 1; j=1, -, p}, so that our parameter 8

is a random sample from a normal mixture represented by
Bila; ~ (1—e))N(0,6?) + a;,N(0,cfdb), j=1,-,p, )

where p(a;=1)=1-— p(e;=0) = gq; and hyperparameters o;, g, and ¢; are
known. A similar setup in this context was considered by Mitchell and
Beauchamp (1988) and George and McCulloch(1993).

If we set small o, and large ¢; in the above formulation, we have the

following interpretations: (a) If «; = 0, B; would probably be so small that it
could be safely estimated by 0; (b) If e, =1, then non-zero estimate of §;
should probably be inciuded in the final model. Therefore, ¢; may be thought of
as the prior probability that pB; will require a non-zero estimate, or equivalently
that j-th predictor variable x; should be included in the logistic regression model.
The second stage of the hierarchy thus provides the joint prior for 8; | a;’s in (5)

as a multivariate normal prior given by

Bla ~ N,(0,D,RD,), (6)

where a=(a;, -, @,), R is the prior correlation matrix, and with D,=diag{a, 0,
+,a,0,}, with a;=1if ¢;=0 and a;= ¢; if ¢;= 1. For choosing ¢;(>1)
and o; in (6), a useful guide is the following. The density of N(0, c?¢?) is larger
than that of N(0, ¢) iff | B] > 8(c;)0;, where 8(c¢;) = 2In(c)ec?/(ci—1)) V2. 1t
may be also useful to note that ¢; is the ratio of the heights of N(0,c/s?) and

N(O, a?) at 0, indicating the prior odds of excluding x; when §&; is very close to 0.
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The third, and final, stage specifies beliefs about a;’s. This can be done via a

reasonable choice of the prior density for a:
pla) = ll:[lq}”(l—q;) A-a)
Therefore, the complete model structure of the hierarchy has the form.

pyip =T sla-py'"
(Bl @) = (27) “"*|D,RD,| ~**exp {— (D RD,) ~' 8},

pa) = TLara-a)".

In many applications, it may be of interest to make inferences both about the
unit characteristics, the 8;’s, and the population characteristics, the ;’s. In either
case, straightforward probability manipulations involving Bayes’ theorem provide

the required joint posterior density of B8 and @ from which one can make the
inference of interest:

(B, @l ¥) = C2x) "*ID,RD,| "exp{—~ % B'(D.RD.) B}

a; (“ﬂj) Y.' — Y,
x IIle (1—gq) ! 11:111":' 1-pn" v

(7N

where C in the above equation is a generic proportionality constant. Qur main
reason for embedding the logistic model (2) in the above hierarchical mixture
model is to obtain the marginal posterior distribution A(a| Y) o« A Yl|a) x(a),
which contains the information relevant to variable selection. However, it is easily
seen that the problem of analytically calculating the marginal from (7) is a
challenging one. Fortunately, recent developments of a MCMC method, say the
Gibbs sampler, provides a method that directly addresses simulation based
calculation of the marginal posterior (cf. Gelfand and Dey 1994).
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3. Variable Selection

As the cdf of logistic distribution is approximately equivalent to that of
t@/.638 (cf. Albert and Chip 1993), the variable selection for tg link regression

model is the same as that for logistic regression model. Let M(t) be a class of

t-link functions, and let consider the model M, € M(#), v=8, wherein

Ayigm) = M Tx » a-T.0x/ 80"

is the sampling density(likelihood function). Here 7T,(-) is the cdf of ¢
distribution with v degrees of freedom. To allow for the possibility that the
posterior simulation requires data augumentation, so let #» latent variables
Z,,2Z,,,Z, be independently distributed from ¢ distributions with locations

parameter X ;' B, scale parameter 1, and degrees of freedom v such that
Z; ~ t,(X;/B,1) and Y=I(Z; > 0), i=1,,n, (8

where I(A) is an indicator function of the event A. Since Pr(Z;>0)= T.(X;'8),
(8) defines ¢, link linear regression model. Let us introduce additional independent
random variables A; i=1,-,n, then the distribution of Z; can be written as the
following scale mixture of normal distributions: Z;| 4; is distributed N(X;’ 8,7 ")
and A; is distributed Gamma (v/2, 2/v), i=1,--,n, with pdf proposional to
AY* Vexp(—vA;/2). Thus, under this data agumentation approach, we can rewrite

the likelihood in (4) as that of the unobserables 8. A, and Z;’s;

L(B. A, Z) = In[l{{I(Z,' > O)I(YI = l) + I(Zi < 0)]( Yi — 0)} (
= 9)
x $(Z; X, B AT e ar e Y

where ¢(v) = [I(W/2) 2/ 17" and ¢( X B.47Y) is the N(X, B, A7 ") pdf.
Under the hierarchical model, the joint posterior density of the unobservables
B, a, A and Z, given the data Y= (Y, -, Y,) . is thus obtained by
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A8, a 2, Z1Y) =C@nD "4D,RD, " exp (~ § B'(D.,RD,) ' B)
x Jl(l(Z,»)O)I( Yi= 1)+ IZ,< I Y, =0)} (10)

< I 62, %/ 8,37 e e T Haf1-0) ),

where C here is a generic proportionality constant and c(v) = [I'(v/2)(2/v) V2] -1,
Computation of the marginal posterior distribution of @ using the Gibbs sampling
algorithm requires only the posterior distribution of @ conditional on 8, 4 and
Z, the posterior distribution of B conditional on @, A and Z, the posterior
distribution of A conditional on B, @ and Z and the posterior of Z conditional
on B, A and e, and these fully conditional distributions are of standard forms.

From (10), the posterior density of B8 given a, A and Z is given by
(81 Y, Z, 3, a)<| D,RD,| Vexp (— % #(D,RD,) "' 8} ] #(2; X/ 8,471, (D)

It is noted that this fully conditional posterior density is the usual posterior
density for the regression parameter in the normal linear model

Z=XB + e, where e ~ N,(0,D;"), (12)

where B is assigned to the proper N,(0,D,RD,) prior, D; = diag{d,, Az, -+, A,}
and X = (X, -, X,)".

Thus, the result by Zellner(1971) gives the conditional posterior of 8 as
Bl Y. Z A, a ~ N,(B, B), (13)

where B= {(D,RD,) '+ X'D; X} " (X'D;2), B= {(D,RD,) '+ X'D;X}"! and
D; = diag{A, A5 - ,A,}.

The fully conditional distributions of Z; ---,Z, are independently distributed as
truncated normal distributions :
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Z1Y, B, A a ~ NX/BDIZ > 0), if ¥;=1,
(14)
Z| Y, B, A a~ NX/B8 DI(Z =< 0), if Y;,=0.

Additional variables A, A4,, -+, 4,, are independent with conditional distributions

Al B, Z, a~ Gamma( v ,,+(Z,EX,-'B)2 ) (15)
Full conditional distributions of «,, --,a, are
b; .
G| Y. 2.8 % ay ~ Beyig) i=lop, (16)
where a¢ = (a;, = ,@;-1, @41, >, a,), Be(y) denotes a Bernoulli distribution

with parameter 7,

b= (ID.RD,| " exp (— 3 8 (D.RD) ' BY)  xq,

m.=

and

d; = {ID,RD,| " exp (~ & B'(D.RD,) ' B)} _ x(1=4g).
~In case, if we choose the prior correlation R= I, in (7), the dependence
through out (16) may be eliminated so that

b; exp{—B%/(2c}a?)}a;

bj+d;  exp{—B}/(2c}a}}q; + ciexp{—F/(2d2)}Y1~¢q) "

This simplifies the calculation required. By repeated successive Gibbs sampling
from (13), (14), (15) and (16), we get the Gibbs sequence

B(O)' Z(O),A(O), 0(0),B(1), Z(l), J(l), a(l)',__, B(r)' Z(r)' A(r)’ a(r), an

that is an ergodic Markov chain. Therefore, as r approaches infinity, the joint

distribution of @ ) can be shown to approach the joint distribution of . Thus,
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for large r, say 7°, a (") can be regarded as one simulated value from the

marginal posterior of a@. For the determination of r*, we may use variety of
diagnostic tools (cf. Cowles and Carlin, 1996) :

(i) Run a several parallel chains with starting points drawn from what we
believe is a distribution overdispersed with respect to the stationary
distribution. Then we visually inspect these chains by overlaying their
sampled values on a comman graph for -2In(the joint posterior in (10))
(because we are dealing with high dimensional models).

(ii) Check the graph of Gelman and Rubin (1992) shrink factors and lag 1
autocorrelation of -2In(the joint posterior).

By use of the above tools, we may check the convergence of the Gibbs sequence
and determine appropriate value of r°. Once we determine the value of 7°. as
practiced by Geman and Geman (1984) and Besag, York and Mollie (1991), a
single long chain of the Gibbs sampler is used to get the (Gibbs sample of size m,
{2‘7(), ., aT(m)}. This method consists of picking off every Tth value in a
single long run of lengh N= mT+ ¢*, where the number of r* is initial iterations
that should be discarded to allow for “burn-in”. The autocorrelation function of
Mg for
the Gibbs sample. The Gibbs sample can be used to compute the empirical

the long run chain gives the value of T that secures the indepence of «

distribution of the a which converges to the actual marginal posterior A(a| ¥)
(cf. Casella and George 1992; Tierney 1994). In particular, the empirical distribution

of the a would have following implications:

(i) the distribution corresponding to the most promising subsets of x;, -, x,
will appear with the highest frequency, because it is just those values
which have largest probability under #(al| ¥Y).

(i) The low-frequency or zero-frequency values of @ may simply be ignored,
because these correspond to the least promising models.

(iii) If no high-frequency values of a appeared in the empirical distribution,
then we would conclude that the data contain little information for
discriminating between models.

Thus a simple tabulation of the high-frequency values of a can be used to
identify the corresponding subsets of predictors as potentially promising. The
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starting value of B, B, may be taken to be the maximum likelihood estimate,
AQ=(1,-,1) and a® = (1,--,1). Note that it is computationally easy to
simulate from the multivariate normal distribution (13) and the truncated normal
distributions in (14) (see Devroye 1986 for simulation algorithm).

4. Numerical Example

In this section we illustrate the performance of the variable selection approach
on both simulated and a real data examples.

4.1 Simulated Example

This subsection illustrates the performance of the suggested variable selection
approach on a simulated example. This example treats problems involving p =5
potential predictors of size » = 50. The predictors were obtained as independent
standard normal variables x;, :--, x5, iild ~ N(0, 1) so that they were practically

uncorrelated. The dependent variable was generated according to the logistic model

2):

exp (By x4 + Bsxs)
1+CXD(B4X4 + BSXS) '

pi=P(Y;=1) = (18)

Thus 8= (0,0,0, 84, 8;)". We applied the suggested variable selection method

with the indifference prior
p(a) = (1/2)5, g = 0 = 05 = .5, C}= = =¢C5 = C, and R:‘:Is

Using the simulated data of size % =50, we ran twelve parallel chains for the
Gibbs sampler(formulated by use of each prior in <Table 1>). The parallel chains
were obtained by differing starting points overdispersed to provide good coverage
of the posterior. The figures al and a2 show the traces from each chain as
separate series on the same graph and a Kenel density estimate calculated by
combining the values of -2In(the point posterior) from all chains. The figures bl
and b2 indicate that the estimated shrink factor for -2 In(the joint posterior)
appears to have stabilized around 1.0 within 1000 iterations. Using the same
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artificial data set of size z# =50 a Gibbs sample of m = 1000 observations from
the Gibbs sequence was obtained from each Gibbs sampler having different prior.
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a2 (By =Bs=4,c=5) b2 (By = Bs=4, c=5)

< Figure 1 > al and a2 indicate Trace plot and Kernel density for -2In(the joint
posrerior); b1 and b2 indicate Shrink Factor plot for —2in(the joint

posrerior).
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< Table 1 > High Frequency Models

True Model xyx5 (B1=2,8=2) x4 %5 (By =4, Bs=4)
selected variables proportion selected variables  proportion
prior 1 X4 X5 38.3 X4 X5 411
(¢=5) X2X4 X5 10.3 X3X4%Xs5 145
X3X4X5 9.7 X2X4X5 10.8
prior 2 X4X5 472 X4Xs5 55.6
(c=10) 2 14.2 X3%4%s5 10.8
X1X4X5 6.7 XXy X5 75
prior 3 X4%s5 428 Xy%s 586
(c=15) X4 183 X3X4 X5 85
X5 7.0 x5 7.1

The sampling scheme adopted here was to allow initial 1000 iterations for
“burn-in" and then to pick up every 30th observation until Gibbs sample of size
m = 1000 was collected. <Table 1> displays the three high-frequency models
corresponding to the frequencies of a= (a;, -*,a@;) that appeares for each

combination of ¢, 8;, and fs5. In each case of the priors, the true model is

included in the three high-frequency value of a, suggesting reasonable robustness
with respect to prior specifications. Aside from the robustness, the table notes the
following implications: (i) It shows how the suggested variable selection method
successful in identifying several promising models rather than the single best
model. This feature is similar to the way in which stepwise methods are used to
narrow the scope of model selection. (ii) For every prior, the true model is
included in three most probable models selected. Prior 1, which had smallest c;,

seemed to favor more saturated models. The prior 3, which used the largest c;,

seemed to favor more parsimonious models.

4.2. Real Data Example

The real data in <Table 2> (reported in Collett 1991) are those of the presence
of prostatic nodal involvement collected on 53 patients with cancer of the prostate.
The data include a binary response variable Y that takes the value 1 if cancer
to spreaded to the surrounding lymph nodes and value 0 otherwise. The objective
is to explain the binary response with a constant term and five variables: age of
the patient in years at diagnosis (x;); logarithmic level of serum acid phosphate

(In{x;)); the result of an X-ray examination, coded 0 if negative and 1 if positive

(x3); the size of the tumor, coded 0 if small and 1 if large (x4): and the
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pathological grade of the tumor, coded O if less serious and 1 if more serious
(x5). The probability of positive response can be explained through a logit link
function. If interactions and powers of predictor variables are excluded, then there

are 2° possible models that can be fit. Instead of conventional variable selection
method that searches the best fitted model among 32 possible models, we have
applied the suggested variable selection approach to select promising subsets of
x1, ., x5. For the purpose of robustness, we have considered various choices of

hyperparameters o;, ¢; and R for the second hierarchy of the model (6). For each
o; we have considered the low and high settings, ¢;= .3 and o¢;=.5. For each

¢; we have considered the low and high settings, ¢;=3 and c¢;=6. These

< Table 2 > Nodal Involvement Data

case y x Xy X3 X4 Xs case Yy X3 Xo X3 X4 X5
1 0 6 48 0 0 O 28 061 5 0 10
2 0 68 56 0 0 O 29 064 5 0 11
3 0 6 50 0 0 O 30 063 40 0 10
4 0 5% 52 0 0 O 31 052 5 0 11
5 0 58 50 0 0 O 32 066 59 0 11
6 0 60 49 0 0 O 33 1 58 48 1 10
7 0 6 46 1 0 O 34 157 5 1 11
g8 0 60 62 1 0 O 3% 1 6 49 0 1 0
9 1 50 5 0 0 1 36 065 48 0 11
100 0 49 5 1 0 0 37 059 63 1 11
1 0 61 62 0 0 O 38 061 101 0 1 O
12 0 58 71 0 0 O 3 053 7 0 10
13 0 581 6 0 0 0 40 067 95 0 10
4 1 67 67 1 0 1 41 053 66 0 11
15 0 67 47 0 0 1 42 1 65 8 1 11
6 0 51 49 0 0 O 43 1 80 8 1 11
17 0 56 50 0 0 1 4 1 60 76 1 11
8 0 60 78 0 0 O 4% 1 45 70 0 11
19 0 52 8 0 0 0 46 156 78 1 11
20 0 5% 98 0 0 0 47 1 46 70 0 1 0
21 0 67 52 0 0 O 48 1 67 67 0 10
2 0 63 7B 0 0 0 49 1 63 8 0 10
2 1 3 9 0 0 1 5 157 67 0 11
24 0 64 18 0 0 0 51 15 72 1 10
25 1 61 136 1 0 0 52 1 64 8 1 10
26 1 5% 8 0 0 0 53 1 68 126 1 1 1
27 0 64 40 0 1 1 - - - - - -
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< Table 3 > The Four Priors

prior 1 2 3 4
of 0.3 0.3 05 05
Cj 3 6 3 6
R I I I I

choices provid substantial separation between the two mixture components in (5)
while still allowing for plausible values of g, when a;=1. Moreover, for the
prior correlation, R= I; is considered. When R = I;, the components of B are
independent under (6). The priors (6) under the above combinations of hyper—
parameters are noted in <Table 3>. Finally, for the four hierarchy of the model,
we used the indifference prior p(a) = (1/2)°, because we favored no particular
a. For each prior, convergence diagnostic checking was done by the same way
as in the previous artificial data example. <Figure 2> shows that 1000 iterations
of the Gibbs sampling algorithm seem to achieve the convergence. After the initial
1000 iterations every 10th output from 1001 through 11001 iterations was collected
to construct Gibbs sample of size m = 1000 for a given prior.
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< Figure 2 > (a) Trace plot and Kernel density for -2In (the joint posrerior) ;
(b) Shrink Factor plot for —2in {the joint posrerior) from Nodal
Involevment Data.
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< Table 4 > Four High Frequency Models and Marginal Likelihood

prior selected models prop. }f‘;ﬁﬁ? al

prior 1 In(x;) +x3 + x4 154 -25.0745
In(xy) +x3 + x4 + 25 144 -25.7683

x3+ x4 7.0 -37.1907

. X2 + X3 6.4 -36.0531
prior 2.y () oy + x4 205 25,0745
x3 + x4 114 -37.1907

In(xp) +x5 + x4 + x5 9.8 ~25.7683

DI'iOI' 3 X9 + X3 89 -36.0531
In(xy) +x3 + x4 12.0 ~25.0745

X9 + X3 104 -36.0531

X3 + X4 7.4 -37.1907

prior 4 In(xy) +x3 + x4 + x5 6.6 -25.7683
Xy + x3 11.6 ~36.0531

In(x;) +x3 + x4 103 -25.0745

X3 10.2 -35.9913

X 9.8 -39.9913

<Table 4> displays the four high—frequency models and corresponding
logarithmic values of marginal likelihood obtained from each of the four priors.
See, Kim(1997) for the algorithm of calculating the marginal likelihood. The table
notes that, as in the simulation example, the suggested variable selection method
is robust against the the choice of the prior specification. This is shown from the
fact for each prior, the selection method yields similar set of high-frequency
models including the best fitting model(see <Table 5>).

<Table 5> is the summary output (obtained from SAS PROGRAM) for the
binary response logistic regression on all 6 predictor variables (including an
intercept) and the best fitting model. In this full model, the weakest variables x;
and x; obtained p values larger than .25 when Ward test(gf. McCullagh and
Nelder 1989 ) for the effect of a predictor variable, given that the other variables
are already in the model, is applied. Using the deviance criterion (cf. Collett 1991),
we can see that the best fitting model among 2° possible logistic regression
models has the predictors In(x;) + x3 + x, (difference in the deviances between the
full model and the best fitting model is 2.43 on chi-square distribution with 2 d.f.
which is not significant). This result is consistent with that obtained by
Chip(1995). Upon comparison between <Table 4> and <Table 5>, we see that this
example once again illustrates how the suggested variable selection method
narrows the scope of possible models for further consideration.



158 F274 %923 A A268 A1z 1998 34

< Table 5 > Parameter Estimates of the Logistic Regression Model
to the Data on Nodal Involvement

full model best fitting model

predictor df Coef. Std. Chi-Sq. p-val Coef. Std. Chi-Sq. p-val.
constant ] 24508 35222 04877 04849 -1.1994 07162 28046 0.094
1 -0.0637 00587 1.1763 0.278 - - - -

In(x,) 1 25795 1.1970 461838  0.0316 22922 11387 4.0520 0.0441
1
1
1

X1

*3 20401 0.8288 6.0583 0.0138 20550 0.7976 66380  0.0100
1.5466 0.7811 3.9205  0.0477 17638 0.7483 55562 0.0184
08345 0.7889 1.1188  0.2902 - - - -

Xy

X5

The choice of a single best model at this point could proceed by applying
standard model selection criteria, such as AIC, the deviance criterion, and the
marginal likelihood criterion (cf. Chip 1995), to the more manageable selected
subsets, Le. selected high-frequency models.

5. Concluding Remarks

This article has developed and illustrated a Bayesian approach to narrow the
scope of possible models in the variable selection for the binary response logistic
regression model. Though the suggested approach would not directly lead to a
single best fitting model, it is demonstrated as a way to save the overwhelming
job of comparing all the 2’ possible submodels for the logistic regression model
with p predictor variables. Thus, as an alternative to usual optimal subset

selection procedure (involving the overwhelming comparisons of all 2® possible
subset models), a two-stage variable selection procedure can be constructed: First,
select m << 2? promising subset models via the suggested approach. In the second
stage, choose a best fitting model by means of usual variable selection criteria
such as AIC, BIC, the deviance criterion (cf. Collett 1991) and the marginal
likelihood by Chip(1995). For the full Bayesian two-stage procedure, we may adopt
the marginal likelihood criterion in the second stage.

The suggested approach relies on the output of the Gibbs sampling algorithm
and demonstrates good performances in a couple of exampies. The algorithm is
applied to a reformulated logistic regression setup constructed in a hierarchical
normal mixture model by introducing hyperparameters that will be used to identify
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subset choices. Among the hyperparameters, ¢; and ¢;, j=1, -, p, are assumed

to be known even though values of them are not readily available. We have given
some useful guidelines to select them. The illustrated examples showed that the
approach is robust against the choice of the parameters. However, to avoid the
subjective choice of the parameters, we may assume vague priors for the
parameters in the hierarchical model setting. This will lead to the algorithm more
complicated, because the full conditional distributions of ¢; and o¢; will not be of

closed forms. The metropolis-Hastings algorithm (cf. Smith and Roberts 1993)
may be used to construct a Markov chains for ¢; and o¢;. The study pertaining

to the performance of the suggested approach obtained by the vague priors is no
less important and left as a future study of interest.
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