CURVES WITH MAXIMAL RANK, BUT NOT ACM, WITH VERY HIGH GENERA IN PROJECTIVE SPACES

Edoardo Ballico

Abstract

A curve $X \subset \mathbb{P}^{r}$ has maximal rank if for each $t \in \mathbb{N}$ the restriction map $H^{0}\left(\mathcal{O}_{\mathbb{P}^{r}}(t)\right) \rightarrow H^{0}\left(\mathcal{O}_{X}(t)\right)$ is either injective or surjective. We show that for all integers $d \geq r+1$ there are maximal rank, but not arithmetically Cohen-Macaulay, smooth curves $X \subset \mathbb{P}^{r}$ with degree d and genus roughly $d^{2} / 2 r$, contrary to the case $r=3$, where it was proved that their genus growths at most like $d^{3 / 2}$ (A. Dolcetti). Nevertheless there is a sector of large genera g, roughly between $d^{2} /(2 r+2)$ and $d^{2} / 2 r$, where we prove the existence of smooth curves (even aCM ones) with degree d and genus g, but the only integral and non-degenerate maximal rank curves with degree d and arithmetic genus g are the aCM ones. For some (d, g, r) with high g we prove the existence of reducible non-degenerate maximal rank and non aCM curves $X \subset \mathbb{P}^{r}$ with degree d and arithmetic genus g, while (d, g, r) is not realized by non-degenerate maximal rank and non aCM integral curves.

1. Introduction

Let $X \subset \mathbb{P}^{r}, r \geq 3$, be an integral and non-degenerate curve. Set $d:=$ $\operatorname{deg}(X)$ and $g:=p_{a}(X)$. We recall that X is said to be arithmetically CohenMacaulay (or $a C M$ for short) if $h^{1}\left(\mathcal{I}_{X}(t)\right)=0$ for all $t \in \mathbb{N}$ and that it is said to have maximal rank if for each $t \in \mathbb{N}$ either $h^{0}\left(\mathcal{I}_{X}(t)\right)=0$ or $h^{1}\left(\mathcal{I}_{X}(t)\right)=$ 0 . Thus if X has maximal rank and for some $t \in \mathbb{N}$ we know the integer $h^{0}\left(\mathcal{O}_{X}(t)\right)$, then we know the integers $h^{0}\left(\mathcal{I}_{X}(t)\right)=\max \left\{0,\binom{r+t}{t}-h^{0}\left(\mathcal{O}_{X}(t)\right)\right\}$ and $h^{1}\left(\mathcal{I}_{X}(t)\right)=\max \left\{0, h^{0}\left(\mathcal{O}_{X}(t)\right)-\binom{r+t}{t}\right\}$. An aCM curve has maximal rank, but easy examples show that the converse does not hold. In the case $r=3$ all pairs (d, g) realized by some integral (and then by some smooth, too) aCM curve are known $([9,17])$. For all integers $d \geq r$ set $\pi(d, r):=\binom{m}{2}(r-1)+m \epsilon$, where $m:=\lfloor(d-1) /(r-1)\rfloor$ and $\epsilon:=d-1-m(r-1)$. We recall that for any non-degenerate X Castelnuovo proved that $g \leq \pi(d, r)$ and classified the

[^0]curves with $g=\pi(d, r)$ ([11, Theorems 3.7 and 3.11$])$. Such curves exist for all $d \geq r$. Note that
$$
\lim _{d \rightarrow+\infty} \pi(d, r) / d^{2}=\frac{1}{2 r-2}
$$
A. Dolcetti proved the existence of a real number $K>0$ such that if the pair (d, g) is realized by a maximal rank, but not aCM, curve $X \subset \mathbb{P}^{3}$ (i.e., $d:=\operatorname{deg}(X)$ and $\left.g:=p_{a}(X)\right)$, then $g \leq K d^{3 / 2}$. As far as we know the family of maximal rank space curves which asymptotically for large d have the largest ratio $d^{3 / 2} / g$ are the ones constructed by A. Hirschowitz and R. Hartshorne in [14, 5.4, 5.5 and 5.8] (see [8, Example 1.7] for a description of the pairs (d, g) obtained in this way). There is a smaller positive real number K_{1} such that for all $d \gg 0$ and all $g \leq K_{1} d^{3 / 2}$ there is a smooth maximal rank space curve $X \subset \mathbb{P}^{3}$ with degree d and genus g and these curves are not aCM, except for a few pairs $(d, g)([3])$. The aim of this note is to prove that Dolcetti's result is peculiar to the case $r=3$. We show this claim proving the following result.

Theorem 1.1. Fix an integer $r \geq 4$.
(1) If (d, g) is realized by some non-degenerate integral maximal rank curve $X \subset \mathbb{P}^{r}$, which is not aCM, then $g \leq \pi(d, r+1)$.
(2) For each $r \geq 5$ and each integer $d \geq r+1$ there is a smooth, connected and non-degenerate maximal rank curve in \mathbb{P}^{r} with degree d, genus $\pi(d, r+1)$ and not aCM.
(3) For each even integer $d \geq 6$ there is a smooth, connected and nondegenerate maximal rank curve in \mathbb{P}^{4} with degree d, genus $\pi(d, 5)$ and not aCM.

For all integers $d \geq r$ there are smooth and non-degenerate aCM curves $X \subset \mathbb{P}^{r}$ with degree d and genus $\pi(d, r)$ (Remark 3.5) and so part (1) of Theorem 1.1 shows that to be of maximal rank, but not aCM, gives a (small) restriction on the growth of the genera. Parts (2) and (3) of Theorem 1.1 show that for $r>3$ the growth is still quadratic in d. We stress that the restriction in part (1) does not arise for aCM curves (Remark 3.5). In Section 4 we prove the existence of maximal rank, but not aCM, curves with high genus $g<\pi(d, r+1)$. More precisely the maximal genus $<\pi(d, r)$ is the integer $\pi_{1}(d, r+1)$, which we define here following [11, Theorem 3.15 and Section 3.c]. For all integers $r \geq 4$ and $d \geq 2 r+1$ set $\pi_{1}(d, r):=\binom{m_{1}}{2} r+m_{1}\left(\epsilon_{1}+1\right)+\mu_{1}$, where $m_{1}:=\lfloor(d-1) / r\rfloor$, $\varepsilon_{1}:=d-m_{1} r-1, \mu_{1}:=1$ if $\varepsilon_{1}=r-1$ and $\mu_{1}:=0$ if $\varepsilon_{1} \neq r-1$. Note that $\lim _{d \rightarrow+\infty} \pi_{1}(d, r) / d^{2}=\frac{1}{2 r}$.

We prove the following result.
Proposition 1.2. Fix integers $r \geq 5, d \geq 2 r+3$, and $g<\pi(d, r+1)$. If there is an integral, non-degenerate maximal rank, but not aCM, curve $X \subset \mathbb{P}^{r}$ with degree d and genus g, then $g \leq \pi_{1}(d, r+1)$.

For $r \geq 9$ the only integers for which there is a smooth curve of degree d and genus $\pi_{1}(d, r+1)$ are $\equiv 0,1(\bmod r+2)$ (Remark 4.2). See Examples 4.3 and 4.4 for existence results in the set-up of Proposition 1.2 for $r=7,8$.

All the curves with maximal rank with very large genus appearing in Theorem 1.1 and potentially appearing in the set-up of Proposition 1.2 are contained in a quadric hypersurface. If we impose that the minimal degree of a hypersurface containing the curve X is at least 3 there are stronger upper bounds (but still quadratic in d) for the genus (Corollary 2.6).

In Section 5 we consider reducible, connected and non degenerate curves $W \subset \mathbb{P}^{r}$ with maximal rank, but they are not aCM and for which there is no integral, non-degenerate curve $X \subset \mathbb{P}^{r}$ with maximal rank and not aCM and with $\left(\operatorname{deg}(X), p_{a}(X)\right)=\left(\operatorname{deg}(W), p_{a}(W)\right)($ Remark 5.2 $)$.

We work over an algebraically closed field with characteristic 0 .
We thank the referee for useful observations.

2. Preliminary results

Let $X \subset \mathbb{P}^{r}$ be an integral and non-degenerate curve. Let $s(X)$ denote the minimal positive integer x such that $h^{0}\left(\mathcal{I}_{X}(x)\right)>0$. Since X is non-degenerate, we have $s(X) \geq 2$. Let $H \subset \mathbb{P}^{r}$ be a general hyperplane. Consider the exact sequence

$$
\begin{equation*}
0 \rightarrow \mathcal{I}_{X}(t-1) \rightarrow \mathcal{I}_{X}(t) \rightarrow \mathcal{I}_{X \cap H, H}(t) \rightarrow 0 . \tag{2.1}
\end{equation*}
$$

Let $\sigma(X)$ be the minimal integer x such that $h^{0}\left(H, \mathcal{I}_{X \cap H, H}(x)\right) \neq 0$. Obviously, $\sigma(X) \leq s(X)$. Since X is integral, we have $h^{1}\left(\mathcal{I}_{X}\right)=0$. Thus the case $t=1$ of (2.1) gives $h^{0}\left(H, \mathcal{I}_{X \cap H, H}(1)\right)=0$, i.e., $X \cap H$ spans H. Thus $\sigma(X) \geq 2$.

Remark 2.1. Several times we will be in the following set-up. Let $W \subset \mathbb{P}^{n}$ be an integral and non-degenerate surface such that W spans \mathbb{P}^{n}, W is aCM and it is contained in at least one quadric surface; later we will take $r=n-1$. Let $C \subset W$ be an integral and non-degenerate curve. Since $h^{0}\left(\mathcal{I}_{W}(2)\right) \neq 0$, we have $h^{1}\left(\mathcal{I}_{C}(2)\right) \neq 0$. Thus C has maximal rank if and only if $h^{1}\left(\mathcal{I}_{C}(t)\right)=0$ for all $t \geq 2$, while C is aCM if and only if $h^{1}\left(\mathcal{I}_{C}(t)\right)=0$ for all $t>0$ (note that $h^{1}\left(\mathcal{I}_{C}\right)=0$, because C is integral). Thus C is aCM if and only if it has maximal rank and it is linearly normal. Since W is aCM, C is aCM (resp. has maximal rank) if and only if for each integer $t>0$ (resp. $t \geq 2$) the restriction map $H^{0}\left(\mathcal{O}_{W}(t)\right) \rightarrow H^{0}\left(\mathcal{O}_{C}(t)\right)$ is surjective. We will always have $h^{1}\left(\mathcal{O}_{W}(t)\right)=0$ for all $t>0$. Thus the restriction map $H^{0}\left(\mathcal{O}_{W}(t)\right) \rightarrow H^{0}\left(\mathcal{O}_{C}(t)\right)$ is surjective if and only if $h^{1}\left(\mathcal{O}_{W}(t)(-C)\right)=0$. Now fix $o \in \mathbb{P}^{n} \backslash W$ such that the linear projection $\ell: \mathbb{P}^{n} \backslash\{o\} \rightarrow \mathbb{P}^{n-1}$ from o maps W isomorphically onto the surface $Y:=\ell(W)$ (we need that either $n \geq 6$ or $n=5$ and W is the Veronese surface). Hence $X:=\ell(C)$ is isomorphic to C. Suppose that $h^{1}\left(\mathbb{P}^{n-1}, \mathcal{I}_{Y}(t)\right)=0$ for all $t \geq 2$ and that C has maximal rank. Since X is not linearly normal, it is not aCM. We claim that X has maximal rank. Since X spans \mathbb{P}^{n-1}, it is sufficient to prove that $h^{1}\left(\mathbb{P}^{n-1}, \mathcal{I}_{X}(t)\right)=0$ for all $t \geq 2$. Fix an integer $t \geq 2$.

Since ℓ induces an isomorphism between W and Y and between C and X and the restriction map $H^{0}\left(\mathcal{O}_{W}(t)\right) \rightarrow H^{0}\left(\mathcal{O}_{C}(t)\right)$ is surjective, the restriction $\operatorname{map} H^{0}\left(\mathcal{O}_{Y}(t)\right) \rightarrow H^{0}\left(\mathcal{O}_{X}(t)\right)$ is surjective. Since $h^{1}\left(\mathbb{P}^{n-1}, \mathcal{I}_{Y}(t)\right)=0$, we get $h^{1}\left(\mathbb{P}^{n-1}, \mathcal{I}_{X}(t)\right)=0$.

We recall the following lemma proved for $r=3$ in [8, Lemma 1.2]; the same proof works for any r.
Lemma 2.2. Assume that X has maximal rank. X is aCM if and only if $s(X)=\sigma(X)$ and the restriction map $H^{0}\left(\mathcal{I}_{X}(s(X))\right) \rightarrow H^{0}\left(H, \mathcal{I}_{X \cap H, H}(s(X))\right)$ is surjective.

Remark 2.3. Assume that the non-degenerate curve $X \subset \mathbb{P}^{r}$ is linearly normal, i.e., assume $h^{1}\left(\mathcal{I}_{X}(1)\right)=0$. By (2.1) the restriction map $H^{0}\left(\mathcal{I}_{X}(2)\right) \rightarrow$ $H^{0}\left(\mathcal{I}_{X \cap H, H}(2)\right)$ is surjective. Assume $s(X)=2$ and that X has maximal rank. Since X is integral, we have $h^{1}\left(\mathcal{I}_{X}\right)=0$. Thus the case $t=1$ of (2.1) gives $h^{0}\left(H, \mathcal{I}_{X \cap H, H}(1)\right)=0$. Thus $\sigma(X)=2$. Lemma 2.2 shows that X is aCM.

Lemma 2.4. Let $X \subset \mathbb{P}^{r}$ be an integral and non-degenerate curve such that $\sigma(X)>2$. Set $d:=\operatorname{deg}(X)$ and fix an integer σ such that $2 \leq \sigma \leq \sigma(X)$. Let $H \subset \mathbb{P}^{r}$ be a general hyperplane. Set $S:=X \cap H$ and $\beta:=h^{0}\left(H, \mathcal{I}_{S, H}(\sigma)\right)$. Take $A, B \subset S$ and an integer $\alpha>0$ such that $h^{1}\left(H, \mathcal{I}_{A, H}(\alpha)\right)=0$ and $h^{0}\left(H, \mathcal{I}_{A, H}(\alpha)\right)>0$. If $|B| \leq\binom{ r+\sigma-1}{r-1}-\beta$, then $h^{1}\left(H, \mathcal{I}_{A \cup B, H}(\alpha+\sigma)\right)=0$ and $h^{0}\left(H, \mathcal{I}_{A \cup B, H}(\alpha+\sigma)\right)>0$.

Proof. Note that $\beta=0$ if and only if $\sigma<\sigma(X)$. Since $h^{0}\left(H, \mathcal{I}_{S, H}(\sigma)\right)=\beta$, there is $D \subseteq S$ such that $|D|=\binom{r+\sigma-1}{r-1}-\beta$ and $h^{1}\left(H, \mathcal{I}_{D, H}(\sigma)\right)=0$. Since S has the Uniform Position Property in the sense of [11, Ch. III], $h^{1}\left(H, \mathcal{I}_{F, H}(\sigma)\right)=0$ for all $F \subseteq S$ such that $|F| \leq\binom{ r+\sigma-1}{r-1}-\beta$. Since $|A|<\binom{r+\alpha-1}{r-1},|B| \leq\binom{ r+\sigma-1}{r-1}$ and $\binom{r+\alpha-1}{r-1}+\binom{r+\sigma-1}{r-1} \leq\binom{ r+\alpha+\sigma-1}{r-1}$, we have $h^{0}\left(H, \mathcal{I}_{A \cup B, H}(\alpha+\sigma)\right)>0$. Taking $B \backslash B \cap A$ instead of B we reduce to the case $A \cap B=\emptyset$. Set $z:=|B|$. We use induction on the integer z starting with the trivial case $z=0$. Take a general $Q \in\left|\mathcal{I}_{A, H}(\alpha)\right|$. Since S is in uniform position, either $h^{1}\left(H, \mathcal{I}_{S, H}(\alpha)\right)=0$ or $Q \cap(S \backslash A)=\emptyset$. Since in the former case the lemma is true, we may assume $Q \cap(S \backslash A)=\emptyset$ and in particular $Q \cap B=\emptyset$. We may assume $z>0$. Take $p \in B$ and set $B^{\prime}:=B \backslash\{p\}$. By the inductive assumption we have $h^{1}\left(H, \mathcal{I}_{A \cup B^{\prime}, H}(\alpha+\sigma)\right)=0$. Let Q^{\prime} be a general element of $\left|\mathcal{I}_{B^{\prime}, H}(\sigma)\right|$. Since $h^{1}\left(H, \mathcal{I}_{D, H}(\sigma)\right)=0$ and Q^{\prime} is general, we have $p \notin Q^{\prime}$. Thus $p \notin Q \cup Q^{\prime}$. Hence $h^{0}\left(H, \mathcal{I}_{A \cup B, H}(\alpha+\sigma)\right)<h^{0}\left(H, \mathcal{I}_{A \cup B^{\prime}, H}(\alpha+\sigma)\right)$. Thus $h^{1}\left(H, \mathcal{I}_{A \cup B, H}(\alpha+\sigma)\right)=0$.

We only use the case $\sigma=2$ of Lemma 2.4 to prove Corollary 2.6, which will be used to prove part (1) of Theorem 1.1.
Lemma 2.5. Let $X \subset \mathbb{P}^{r}$ be an integral and non-degenerate curve such that $\sigma(X)>2$. Let $H \subset \mathbb{P}^{r}$ be a general hyperplane. Set $S:=X \cap H$ and $d:=$ $\operatorname{deg}(X)$. Write $d=a\binom{r+1}{2}+b$ with $a \in \mathbb{N}$ and $-1 \leq b \leq\binom{ r+1}{2}-2$.
(a) We have $h^{1}\left(H, \mathcal{I}_{S, H}(1)\right)=d-r$ and $h^{1}\left(H, \mathcal{I}_{S, H}(2)\right)=d-\binom{r+1}{2}$.
(b) We have $h^{1}\left(H, \mathcal{I}_{S, H}(t)\right)=0$ for all $t \geq 2 a+2$.
(c) We have $h^{1}\left(H, \mathcal{I}_{S, H}(2 a+1)\right) \leq \max \{0, b-r+1\}$.
(d) If $4 \leq t \leq 2 a$ and $t=2 x$ is even we have $h^{1}\left(H, \mathcal{I}_{S, H}(t)\right) \leq d-x\binom{r+1}{2}+$ 1.
(e) If $3 \leq t \leq 2 a-1$ and $t=2 x+1$ is odd, we have $h^{1}\left(H, \mathcal{I}_{S, H}(t)\right) \leq$ $d-x\binom{r+1}{2}+1-r$.

Proof. Since $h^{0}\left(H, \mathcal{I}_{S, H}(2)\right)=0$, we have $d \geq\binom{ r+1}{2}$ and hence part (a) is trivial. Since H is general, the set S has cardinality d and it is in uniform position, i.e., $h^{0}\left(H, \mathcal{I}_{A, H}(t)\right)=h^{0}\left(H, \mathcal{I}_{B, H}(t)\right)$ for all $t \in \mathbb{N}$ and any $A, B \subseteq S$ with $|A|=|B|([11$, page 85$])$. Since $h^{0}\left(H, \mathcal{I}_{S, H}(2)\right)=0$, we have $h^{1}\left(H, \mathcal{I}_{A, H}(2)\right)=0$ for all $A \subset S$ such that $|A| \leq\binom{ r+1}{2}$.

Now we prove part (d). Fix any $A \subset S$ with $|A| \leq\binom{ r+1}{2}-1$. Thus $h^{0}\left(H, \mathcal{I}_{A, H}(2)\right)=\binom{r+1}{2}-|A|>0$. Take a general $Q \in\left|\mathcal{I}_{A, H}(2)\right|$. Since S is in uniform position and Q is general, we have $Q \cap S=A$. Write $S=$ $A_{1} \sqcup B_{2} \sqcup \cdots \sqcup B_{a-1} \sqcup D$ with $\left|B_{i}\right|=\binom{r+1}{2}$ for all i and $|D|=b$. Part (d) is empty if $a=3$. To get part (d) for $x=2$ (hence $a \geq 4$) use Lemma 2.4 with $\alpha=\sigma=2$, and $B:=B_{1}$. Then use Lemma 2.4 for $\alpha=2 x-2$ and $\sigma=2$ to prove $h^{1}\left(H, \mathcal{I}_{A \cup \ldots \cup B_{x}, H}(2 x)\right)=0$ by induction on x. This vanishing proves part (d).

To prove part (b) it is sufficient to prove that $h^{1}\left(H, \mathcal{I}_{S, H}(2 a+2)\right)=0$, which is proved from the case $t=2 a$ using that $|D| \leq\binom{ r+1}{2}$ and applying Lemma 2.4 for $\sigma=2$ and $\alpha=2 a$.

Now we prove part (e). We may assume $a \geq 2$, because if $a=1$ part (e) is empty. We fix $E \subset S$ with $|E|=r-1$. Since S is in uniform position and it spans H, E spans a hyperplane M of H such that $M \cap S=E$. Write $S=$ $E \sqcup F_{1} \sqcup \cdots \sqcup F_{x} \sqcup D^{\prime}$ with $\left|F_{i}\right|=\binom{r+1}{2}$ for all i. Apply x times Lemma 2.4, always with $\sigma=2$ and $\alpha=1,3, \ldots, 2 x-3$. We get $h^{1}\left(H, \mathcal{I}_{E \sqcup F_{1} \sqcup \cdots \sqcup F_{x}, H}(2 x+1)\right)=0$ and so $h^{1}\left(H, \mathcal{I}_{S, H}(2 x+1)\right) \leq\left|D^{\prime}\right|=d-r+1-x\binom{r+1}{2}$.

Part (c) follows from part (e) for $t=2 a$ using Lemma 2.4 with $\alpha=2 a-1$ and $\sigma=2$.

Corollary 2.6. Let $X \subset \mathbb{P}^{r}$ be an integral and non-degenerate curve such that $\sigma(X)>2$. Set $d:=\operatorname{deg}(X)$ and $g:=p_{a}(X)$. Write $d=a\binom{r+1}{2}+b$ with $a \in \mathbb{N}$ and $-1 \leq b \leq\binom{ r+1}{2}-2$. Then $g \leq 2 a d-a^{2}\binom{r+1}{2}-r a+a-2+\max \{0, b-r+1\}$.
Proof. Let $H \subset \mathbb{P}^{r}$ be a general hyperplane. Set $S:=X \cap H$. By the Castelnuovo's method ([11, Corollary 3.2]) we have $g \leq \sum_{t \geq 1} h^{1}\left(H, \mathcal{I}_{S, H}(t)\right)$. Parts (a), (b) and (c) of Lemma 2.5 give $h^{1}\left(H, \mathcal{I}_{S, H}(1)\right)=d-r, h^{1}\left(H, \mathcal{I}_{S, H}(2)\right)=d-$ $\binom{r+1}{2}, h^{1}\left(H, \mathcal{I}_{S, H}(t)\right)=0$ for all $t \geq 2 a+2$ and $h^{1}\left(H, \mathcal{I}_{S, H}(2 a+1)\right) \leq \max \{0, b-$ $r+1\}$. For all integers x such that $2 \leq x \leq a$ we have $h^{1}\left(H, \mathcal{I}_{S, H}(2 x)\right) \leq$ $d-x\binom{r+1}{2}+1$ (part (d) of Lemma 2.5). For all integers x such that $1 \leq x \leq a-1$ we have $h^{1}\left(H, \mathcal{I}_{S, H}(2 x+1)\right) \leq d-x\binom{r+1}{2}+1-r$ (part (e) of Lemma 2.5).

Since $\sum_{x=2}^{a}\left(d-x\binom{r+1}{2}+1\right)=(a-1) d+a-1-\binom{r+1}{2}(a+2)(a-1) / 2$ and $\sum_{x=1}^{a-1}\left(d-x\binom{r+1}{2}+1-r\right)=(a-1) d-(a-1)(r-1)-\binom{r+1}{2} a(a-1) / 2$, we get $g \leq 2 a d-a^{2}\binom{r+1}{2}-r a+a-2+\max \{0, b-r+1\}$.

Remark 2.7. Note that the upper bound on the arithmetic genus g in Corollary 2.6 is quadratic in d, but with a leading coefficient, $\frac{2}{r(r+1)}$, which is far smaller both of the one for the upper bound, $\pi(d, r)$, for degree d non-degenerate curves, $\frac{1}{2 r-2}([11$, Theorem 3.7]), and the one for non-linearly normal non-degenerate curves (i.e., $\pi(d, r+1)), \frac{1}{2 r}\left(\left[11\right.\right.$, Theorem 3.15]) and $\pi_{1}(d, r+1), \frac{1}{2 r+2}$. Set $\gamma(d, r):=2 a d-a^{2}\binom{r+1}{2}-r a+a-2+\max \{0, b-r+1\}$. Set $m_{1}:=\lfloor(d-1) /(r+1)\rfloor$, $\epsilon_{1}:=d-m_{1}(r+1)-1, \mu_{1}=0$ if $\epsilon_{1} \neq r$ and $\mu_{1}=1$ if $\epsilon_{1}=r$. Recall that $\pi_{1}(d, r+1)=\binom{m_{1}}{2}(r+1)+m_{1}\left(\epsilon_{1}+1\right)+\mu_{1}$.
Claim 1: We have $\gamma(d, r)<\pi(d, r+1)$ for all $r \geq 4$ and $d \geq\binom{ r+1}{2}$.
Claim 2: We have $\gamma(d, r)<\pi_{1}(d, r+1)$ for all $r \geq 5$ and $d \geq\binom{ r+1}{2}$.
Proofs of Claims 1 and 2: Since $\pi_{1}(d, r+1) \leq \pi(d, r+1)$ when the former is defined, i.e., for $d \geq 2 r+5$, for $r \geq 5$ it is sufficient to prove Claim 2 and then prove Claim 1 for $r=4$ (note that $\binom{r+1}{2} \geq 2 r+5$ if and only if $r \geq 5$).
(a) Take $d=\binom{r+1}{2}$. Thus $a=1, b=0$ and $\gamma\left(\binom{r+1}{2}, r\right)=\binom{r+1}{2}-r-1=$ $\binom{r}{2}-1$.

Now we compute $\pi_{1}\left(\binom{r+1}{2}, r+1\right)$. First assume r even. We get $m_{1}=r / 2-1$ and $\epsilon_{1}=r$. Thus $\mu_{1}=1$ and $\pi_{1}\left(\binom{r+1}{2}, r+1\right)=(r-2)(r-4)(r+1) / 8+(r / 2-$ 1) $(r+1)+1=(r-2)(r-4)(r+1) / 8+\binom{r}{2}$. Thus $\pi_{1}\left(\binom{r+1}{2}, r+1\right)>\gamma\left(\binom{r+1}{2}, r\right)$ for all even $r \geq 4$. Now assume r odd. We get $m_{1}=(r-1) / 2=\epsilon_{1}$ and hence $\pi_{1}\left(\binom{r+1}{2}, r+1\right)=(r-1)(r-3)(r+1) / 8+\left(r^{2}-1\right) / 4$. Thus $\pi_{1}\left(\binom{r+1}{2}, r+1\right)>$ $\gamma\left(\binom{r+1}{2}, r\right)$ for all odd $r \geq 5$.
(b) Now we take $r \geq 5$ and any $d \geq\binom{ r+1}{2}$, assume $\pi_{1}(d, r+1)>\gamma(d, r)$ and prove that $\pi_{1}(d+1, r+1)>\gamma(d+1, r)$. By step (a) this would conclude the proof of Claim 2. Set $z:=\pi_{1}(d+1, r+1)-\pi_{1}(d, r+1)$ and $w:=\gamma(d+1, r)-\gamma(d, r)$. It is sufficient to prove that $z \geq w$. We call $a, b, m_{1}, \epsilon_{1}, \mu_{1}$ the integers associated to d and compute the corresponding integers for $d+1$ (which we will write with a prime ${ }^{\prime}$, say a^{\prime}, b^{\prime} and so on). If $b \neq\binom{ r+1}{2}-2$ we have $a^{\prime}=a$ and $b^{\prime}=b+1$. Thus $2 a \leq w \leq 2 a+1$ (the first inequality holding if and only if $b \leq r-2$). If $b=\binom{r+1}{2}-2$, i.e., $d=(a+1)\binom{r+1}{2}-2$, then $a^{\prime}=a+1$ and $b^{\prime}=0$. In this case we have $\gamma\left((a+1)\binom{r+1}{2}-2, r\right)=\left(2 a^{2}+2 a\right)\binom{r+1}{2}-4 a-a^{2}\binom{r+1}{2}-a r+a-2+\binom{r+1}{2}-1-$ $r, \gamma\left((a+1)\binom{r+1}{2}-1, r\right)=\left(2 a^{2}+4 a+1\right)\binom{r+1}{2}-2(a+1)-(a+1)^{2}\binom{r+1}{2}-a r-r+a-1$ and hence $w=2 a-r$.

If $\epsilon_{1}<r$ we have $m_{1}^{\prime}=m_{1}, \epsilon_{1}^{\prime}=\epsilon_{1}$. We have $\mu_{1}^{\prime}=1$ if and only if $\epsilon^{\prime}=r-1$. Thus $m_{1} \leq z \leq m_{1}+1$ in this case and $z=m_{1}+1$ if and only if $\epsilon_{1}=r-1$. Now assume $\epsilon_{1}=r$ and so $\mu_{1}=1$. We have $m_{1}^{\prime}=m_{1}+1$ and $\epsilon_{1}^{\prime}=\mu_{1}^{\prime}=0$. Since $\binom{m_{1}+1}{2}-\binom{m_{1}}{2}=m_{1}$, we get $z=m_{1}$ in this case. Thus to prove that $z>w$ it is sufficient to prove that $m_{1} \geq 2 a+1$. We have $(r+1) m_{1}=d-1-\epsilon_{1} \geq d-r-1$
and $d=a\binom{r+1}{2}+b$. For any $a \geq 1, b \geq-1$ is sufficient to assume either $r \geq 6$ or $r=5, a \geq 2$ and $b \geq 1$.

Now assume $r=5$. Hence $\binom{r+1}{2}=15$. Thus $\gamma(15+x, 5)=9+2 x$ for $0 \leq x \leq 3, \gamma(19+x, 5)=18+3 x$ for $0 \leq x \leq 9$ and $\gamma(29+x, 5)=46+4 x$ for $0 \leq x \leq 4$. To compute $\pi_{1}(15,6)$ we use that $m_{1}=2$ and $\epsilon_{1}=1$. Thus $\pi_{1}(15+x, 6)=12+2 x$ for $0 \leq x \leq 2, \pi_{1}(18+x, 6)=19+3 x$ for $0 \leq x \leq 4$, $\pi_{1}(24,6)=37, \pi_{1}(25+x, 6)=40+4 x$ for $0 \leq x \leq 4$, and so on.
(c) Take $r=4$ and so $\binom{r+1}{2}=10$. Thus $\gamma(10,4)=5$. Call m and ϵ the integers associated to the pair $(10,5)$ for the computation of $\pi(10,5)$. Since $m=2$ and $\epsilon=1$, we have $\pi(10,5)=6$. Now take an integer $d \geq 10$ and assume $\gamma(d, 4) \leq \pi(d, 4)$. Take $a, b, w:=\gamma(d+1,4)-\gamma(d, 4)$ as in step (b). Set $z^{\prime}:=\pi(d+1,5)-\pi(d, 5)$. Call m, ϵ (resp. $\left.m^{\prime}, \epsilon^{\prime}\right)$ the integers needed to compute $\pi(d, 5)$ (resp. $\pi(d+1,5))$. If $\epsilon \leq 3$ we have $m^{\prime}=m, \epsilon^{\prime}=\epsilon+1$ and so $z^{\prime}=m$. If $\epsilon=4$ we have $m^{\prime}=m+1, \epsilon^{\prime}=0$ and so $z^{\prime}=m$. Recall that $w \leq 2 a+1$ with $w=2 a$ if $b \leq 3$, that $(a, b) \neq(1-1)$ and that $d-1=4 m+\epsilon=15 a+b-1$ with $-1 \leq b \leq 8$. To get $z^{\prime} \geq w$ use that $10 a+7 \geq 4(2 a+1)$ and $10 a-2 \geq 8 a$ for all $a \geq 1$.

3. Proof of Theorem 1.1

Proof of part (1) of Theorem 1.1. Let $X \subset \mathbb{P}^{r}$ be an integral and non-degenerate maximal rank curve which is not aCM. Set $d:=\operatorname{deg}(X)$ and $g:=g(X)$ and assume $g>\pi(d, r+1)$. By Castelnuovo's theory ([11, Theorem 3.7]), X is linearly normal and hence $h^{1}\left(\mathcal{I}_{X}(1)\right)=0$. Assume for the moment $h^{0}\left(\mathcal{I}_{X}(2)\right) \neq 0$ and hence $h^{0}\left(\mathcal{I}_{X}(t)\right) \neq 0$ for all $t \geq 2$. Since X has maximal rank, $h^{1}\left(\mathcal{I}_{X}(t)\right)=0$ for all $t \geq 2$. Since X is integral, we have $h^{1}\left(\mathcal{I}_{X}\right)=0$. Thus X is aCM, contradicting one of our assumptions. Thus $h^{0}\left(\mathcal{I}_{X}(2)\right)=0$. Since $h^{1}\left(\mathcal{I}_{X}(1)\right)=0$, we have $\sigma(X)>2$. Taking a general hyperplane section and using the definition of $\sigma(X)$ we get $d \geq\binom{ r+1}{2}$. To get a contradiction and conclude the proof of part (1) of Theorem 1.1 it is sufficient to quote Claim 1 of Remark 2.7.

For the constructive proof of part (2) of Theorem 1.1 we recall the description of the Hirzebruch surfaces, i.e., the \mathbb{P}^{1}-bundles over $\mathbb{P}^{1}([12, \S V .2]$; to translate the notation below to the one used in [12] set $H:=h+e f)$.

Let F_{e} be the Hirzebruch surface with a section of the ruling with selfintersection $-e$. The embeddings of these surfaces, plus the cones over rational normal curves give the minimal degree surfaces ([11, Proposition 3.10]). We have $\operatorname{Pic}\left(F_{e}\right) \cong \mathbb{Z}^{2}$ and we take as a \mathbb{Z}-basis of $\operatorname{Pic}\left(F_{e}\right)$ a fiber f of one of its ruling (the only one if $e>0$) and a section h of the ruling with $h^{2}=-e$; h is unique if $e>0$. We have $\omega_{F_{e}} \cong \mathcal{O}_{F_{e}}(-2 h-(e+2) f)$. All the smooth surfaces $Y \subset \mathbb{P}^{r}, r \geq 3$, with minimal degree $r-1$ are obtained embedding some F_{e} with $e \equiv r-1 \bmod 2$ and $0 \leq e \leq r-2$ by the complete linear system $\left|\mathcal{O}_{F_{e}}\left(h+\frac{r-1+e}{2} f\right)\right|$. From now on we often identify F_{e} and Y, so that a curve $X \subset Y$ belongs to a certain linear system $\left|\mathcal{O}_{F_{e}}(a h+b f)\right|,(a, b) \in \mathbb{N}^{2}$.

Fix an integral and non-degenerate curve $X \subset Y$ with $X \in\left|\mathcal{O}_{F_{e}}(a h+b f)\right|$. Since X is integral and non-degenerate, we have $a>0, b>0, b \geq a e$ and either $a \geq 2$ or $a=1$ and $b>(r-1+e) / 2$. We have $d:=\operatorname{deg}(X)=a(r-1+e) / 2+$ $b-e a=a(r-1-e) / 2+b$. Set $g:=p_{a}(X)$. Since $\omega_{F_{e}} \cong \mathcal{O}_{F_{e}}(-2 h-(e+2) f)$, the adjunction formula gives $\omega_{X} \cong \mathcal{O}_{X}((a-2) h+(b-e-2) f)$ and hence $2 g-2=-e a(a-2)+a(b-e-2)+b(a-2)$, i.e., $g=1+a b-b+\left(e a-e a^{2}\right) / 2-a$.

Now we check for which $(x, y) \in \mathbb{Z}^{2}$ we have $h^{1}\left(\mathcal{O}_{F_{e}}(x h+y f)\right)=0$. Let $\pi: F_{e} \rightarrow \mathbb{P}^{1}$ denote the ruling induced by the complete linear system $\left|\mathcal{O}_{F_{e}}(f)\right|$. For any integer $c \geq 0$ we have $\pi_{*}\left(\mathcal{O}_{F_{e}}(c h+d f)\right) \cong \oplus_{i=0}^{c} \mathcal{O}_{\mathbb{P}^{1}}(d-i e)$. We have $h^{1}\left(\mathcal{O}_{\mathbb{P}^{1}}(t)\right)=0$ if an only if $t \geq-1$. Thus if $x \geq 0$ we have $h^{1}\left(\mathcal{O}_{F_{e}}(x h+y f)\right)=0$ if and only if $y \geq e x-1$.

Now assume $x=-1$. Since $h^{i}\left(\mathcal{O}_{\mathbb{P}^{1}}(-1)\right)=0, i=0,1$, and π is flat, the changing basis theorem gives $\pi_{*}\left(\mathcal{O}_{F_{e}}(a h+b f)\right)=R^{1} \pi_{*}\left(\mathcal{O}_{F_{e}}(a h+b f)\right)=0$. Thus the Leray spectral sequence of π gives $h^{1}\left(\mathcal{O}_{F_{e}}(-h+y f)\right)=0$.

Now assume $x \leq-2$. Since $\omega_{F_{e}} \cong \mathcal{O}_{F_{e}}(-2 h-(e+2) f)$, duality gives $h^{1}\left(\mathcal{O}_{F_{e}}(x h+y f)\right)=h^{1}\left(\mathcal{O}_{F_{e}}((-2-x) f+(-b-e-2) h)\right)$. Since $-2-x \geq 0$, we just saw that $h^{1}\left(\mathcal{O}_{F_{e}}(x h+y f)\right)=0$ if and only if $-y-e-2 \geq e(-2-x)-1$, i.e., if and only if $y \leq(x+1) e-1$.

Fix an integer $x>0$. We have $\mathcal{O}_{F_{e}}(x) \cong \mathcal{O}_{F_{e}}\left(x h+x \frac{r_{1}+e}{2} f\right)$. Since Y is projectively normal, we have $h^{1}\left(\mathcal{I}_{X}(x)\right)=0$ if and only if $h^{1}\left(\mathcal{O}_{F_{e}}(x)(-X)\right)=0$, i.e., if and only if $h^{1}\left(\mathcal{O}_{F_{e}}\left((x-a) h+\left(x \frac{r_{1}+e}{2}-b\right) f\right)\right)=0$. We do not need to show all the possible solutions for arbitrary e for the following reason. In the particular cases (i.e., $e=0,1$) we will do below we will get all integers $d \geq r+1$ and for each of these cases the genus is $\pi(d, r+1)$ by Remark 3.1 below. So the long discussion of the Hirzebruch surfaces, rational cones and the Veronese embedding would only give (by the Castelnuovo's theorem explained in [11, Ch. III]) all possible smooth curves in part (2) of Theorem 1.1.

Remark 3.1. Take any smooth curve $X \subset \mathbb{P}^{r}$ with maximal rank, but not aCM constructed as an isomorphic linear projection of an aCM and linearly normal curve $X^{\prime} \subset \mathbb{P}^{r+1}$ contained in a minimal degree surface T, i.e., either a cone of a rational normal curve of \mathbb{P}^{r+1} or the isomorphic image of an Hirzebruch surface $F_{e}, e \equiv r+1(\bmod 2), 0 \leq e \leq r-2$. Set $d:=\operatorname{deg}(X)$. We claim that $p_{a}(X)=\pi(d, r+1)$, i.e., that $p_{a}\left(X^{\prime}\right)=\pi(d, r+1)$. Indeed, since X^{\prime} is aCM, we have $h^{1}\left(\mathcal{I}_{X^{\prime}}(x)\right)=0$ for all $x \geq 0$. Let $H \subset \mathbb{P}^{r+1}$ be a general hyperplane. Note that $H \cap X^{\prime}$ are d points of the rational normal curve $T \cap H$. Use the proof of Castelnuovo's theorem given in [11, Ch. III].

3.1. $\mathbb{P}^{r}, r \geq 6$ and r even

Fix an integer $t \geq 3$. In this section we consider non-degenerate curves $X \subset \mathbb{P}^{2 t}$, which are not linearly normal (and in particular they are not aCM), but which have maximal rank. Set $F_{0}:=\mathbb{P}^{1} \times \mathbb{P}^{1}$. The line bundle $\mathcal{O}_{F_{0}}(1, t)$ is very ample and it gives a linearly normal embedding $\phi: F_{0} \rightarrow \mathbb{P}^{2 t+1}$ as a minimal degree surface (and in particular as an aCM surface). Let $Y \subset \mathbb{P}^{2 t}$
be a general linear projection of $\phi\left(F_{0}\right)$. Since $2 t \geq 6, Y \cong F_{0}$ and hence for each curve $X \subset F_{0}$ we get an embedding of X into $\mathbb{P}^{2 t}$. Fix integers $a \geq 2$ and $b>0$ and take any smooth $C_{a, b} \in\left|\mathcal{O}_{F_{0}}(a, b)\right|$. Let $X_{a, b} \subset Y$ denote the curve obtained by the linear projection of $\phi\left(C_{a, b}\right)$. Since $a \geq 2, \phi\left(C_{a, b}\right)$ spans $\mathbb{P}^{2 t+1}$ and hence $X_{a, b}$ is non-degenerate and $h^{1}\left(\mathcal{I}_{X_{a, b}}(1)\right)>0$. We have $\omega_{F_{0}} \cong$ $\mathcal{O}_{F_{0}}(-2,-2)$. Hence the adjunction formula gives $\omega_{C_{a, b}} \cong \mathcal{O}_{X_{a, b}}(a-2, b-2)$. Thus $p_{a}\left(X_{a, b}\right)=a b-a-b-1$. Note that $\operatorname{deg}\left(X_{a, b}\right)=b+t a$. For any integer $x>0$ let $\eta_{x, a, b}: H^{0}\left(\mathcal{O}_{F_{0}}(x, t x)\right) \rightarrow H^{0}\left(\mathcal{O}_{X_{a, b}}(x)\right)$ denote the restriction map.

Remark 3.2. Fix $(u, v) \in \mathbb{Z}^{2}$. By the Künneth formula we have $h^{1}\left(\mathcal{O}_{F_{0}}(u, v)\right)=$ 0 if and only if either $u \geq 0$ and $v \geq-1$ or $u=-1$ or $u \leq-2$ and $v \geq 0$.

Remark 3.3. By [1, Corollary 3.3] or [2, Theorem 2] we have $h^{1}\left(\mathcal{I}_{Y}(x)\right)=$ 0 for all $x \geq 2$. Thus for every integer $x \geq 2$ the restriction map ρ_{x} : $H^{0}\left(\mathcal{O}_{\mathbb{P}^{2 t}}(x)\right) \rightarrow H^{0}\left(\mathcal{O}_{Y}(x)\right)$ is surjective. Note that $\mathcal{O}_{Y}(x) \cong \mathcal{O}_{F_{0}}(1, x t)$ and that $h^{0}\left(\mathcal{O}_{F_{0}}(2,2 t)\right)=6 t+3$. Since ρ_{2} is surjective, we have $h^{0}\left(\mathcal{I}_{Y}(2)\right)=$ $\binom{2 t+2}{2}-6 t-3>0$. Thus every curve contained in Y is contained in a quadric hypersurface. Note that $\eta_{x, a, b}$ is surjective (a condition equivalent to $h^{1}\left(\mathcal{I}_{C_{a, b}}(x)\right)=0$ if $\left.x \geq 2\right)$ if and only if $h^{1}\left(\mathcal{O}_{F_{0}}(x-a, t x-b)\right)=0$. By the Künneth's formula we have $h^{1}\left(\mathcal{O}_{F_{0}}(x-a, t x-b)\right)=0$ if and only if either $x \geq a-1$ or $b \geq t x-1$. Since $X_{a, b}$ is an isomorphic linear projection of $\phi\left(C_{a, b}\right)$ and $h^{1}\left(\mathcal{I}_{Y}(x)\right)=0$ for all $x \geq 2$, we have $h^{1}\left(\mathcal{I}_{C_{a, b}}(x)\right)=0$ if and only if $h^{1}\left(\mathcal{O}_{F_{0}}(x-a, x t-b)\right)=0$, i.e., if and only if either $x \geq a$ and $x t-b \geq-1$ or $x-a=-1$ or $x-a \leq-2$ and $t x-b<0$.

Take positive integers a, b. The restriction maps $\eta_{x, a, b}$ are surjective for all $x \geq 2$ if and only if $h^{1}\left(\mathcal{O}_{F_{0}}(x-a, t x-b)\right)=0$ for all $x \geq 2$. Recall that $t \geq 3$ and $\mathcal{O}_{F_{0}}(1)=\mathcal{O}_{F_{0}}(1, t)$. First assume $x \geq a$. In this case $h^{1}\left(\mathcal{O}_{F_{0}}(x-a, t x-b)\right)=0$ if and only if $t x-b \geq x-a-1$ (Remark 3.2) and this is the case if and only if $b \leq t a+1$. If $x=a-1$, then $h^{1}\left(\mathcal{O}_{F_{0}}(x-a, t x-b)\right)=0$ for any b. Now assume $x \leq a-2$. Since $x \geq 2$, in this part we are assuming $a \geq 4$). By Remark 3.2 we have $h^{1}\left(\mathcal{O}_{F_{0}}(x-a, t x-b)\right)=0$ if and only if $b \geq t x$. Thus $\eta_{x, a, b}$ is surjective for all $x \geq 2$ if and only if

$$
\begin{equation*}
2 t a-2 t \leq b \leq 2 t a+1 \tag{3.1}
\end{equation*}
$$

So for each fixed $t \geq 3$ (i.e., for each fixed even $r \geq 6$) and each fixed $a \geq 2$ we have $2 t+1$ possible degrees (ranging from $2 t a-2 t$ and $2 t a+1$), each of them with a different genus (which increases from $t a^{2}-2 a t-t a+2 t-a+1=t a^{2}-3 a t-a+1$ to $t a^{2}+a-t a-a+1=t a^{2}-t a+1$). The maximal degree $2 t a+1$, for the integer a is higher than the minimal degree, $2 t a$, for the integer $a+1$. Thus increasing a we get as degrees all integers which are at least the minimal degree which occurs when $a=4$, i.e., all $d \geq 6 t$. Then we add the non-degenerate examples coming for the integers $a=1,2,3$ (i.e., for $a=1$ we assume $b>t$ and hence $b=t+1$). We get all examples with $d \geq 2 t+1=r+1$.

3.2. $\mathbb{P}^{r}, r \geq 5$ and r odd

Fix an odd integer $r \geq 5$. Thus $r=2 t-1$ for some integer $t \geq 3$. The linear system $\left|\mathcal{O}_{F_{1}}(h+t f)\right|$ induces an embedding $\phi: F_{1} \rightarrow \mathbb{P}^{2 t}$. Let $Y \subset \mathbb{P}^{2 t-1}=\mathbb{P}^{r}$ be a general linear projection of $\phi\left(F_{1}\right)$. We have $h^{1}\left(\mathcal{I}_{Y}(x)\right)=0$ for all $x \geq 2$ by either [2, Theorem 2] or [1, Corollary 3.3]. Fix integer $b \geq a \geq 2$. Fix a smooth curve $X \in\left|\mathcal{O}_{F_{1}}(a h+b f)\right|$. Since $\omega_{F_{1}} \cong \mathcal{O}_{F_{1}}(-2 h-3 f)$, the adjunction formula gives $\omega_{X} \cong \mathcal{O}_{X}((a-2) h+(b-3) f)$ and so $2 p_{a}(X)-2=a(b-3)+$ $(a-2) b-a(a-2)$, i.e., X has genus $1+a b-a(a+3) / 2$. Let $X_{a, b} \subset Y$ be the image of X by the linear projection sending $\phi\left(F_{1}\right)$ isomorphically onto Y. Note that $\operatorname{deg}\left(X_{a, b}\right)=b+t a-a$. For any $x \in \mathbb{N}$ let $\eta_{x, a, b}: H^{0}\left(\mathcal{O}_{F_{1}}(x h+x t f)\right) \rightarrow$ $H^{0}\left(\mathcal{O}_{X}(x)\right)$ denote the restriction map. We only consider the case $b=t a$.

Lemma 3.4. We have $h^{1}\left(\mathcal{O}_{F_{1}}(u h+v f)\right)=0$ if and only if either $u \geq 0$ and $v \geq u-1$ or $u=-1$ or $u \leq-2$ and $u \geq v$.

Proof. First assume $u \geq 0$. Let $\pi: F_{1} \rightarrow \mathbb{P}^{1}$ be the ruling of F_{1}. We have $\pi_{*}\left(\mathcal{O}_{F_{1}}(u h+v f)\right) \cong \oplus_{i=0}^{u} \mathcal{O}_{F_{1}}(v-i)$. Since $h^{1}\left(\mathcal{O}_{\mathbb{P}^{1}}(x)\right)=0$ if and only if $x \geq-1$, the Leray spectral sequence of π gives $h^{1}\left(\mathcal{O}_{F_{1}}(u h+v f)\right)=0$ if and only if $v \geq u-1$.

Now assume $u=-1$. Since $\pi_{*}\left(\mathcal{O}_{F_{1}}(-h+v f)\right)=0$ and $R^{1} \pi_{*}\left(\mathcal{O}_{F_{1}}(-h+\right.$ $v f))=0$, the Leray spectral sequence of π gives $h^{1}\left(\mathcal{O}_{F_{1}}(-h+v f)\right)=0$.

Now assume $u \leq-2$. Since $\omega_{F_{1}} \cong \mathcal{O}_{F_{1}}(-2 h-3 f)$, duality gives $h^{1}\left(\mathcal{O}_{F_{1}}(u h+\right.$ $v f))=h^{1}\left(\mathcal{O}_{F_{1}}((-2-u) h+(-3-v) f)\right)$. Thus $h^{1}\left(\mathcal{O}_{F_{1}}(u h+v f)\right)=0$ if and only if $-3-v \geq-2-u-1$, i.e., $u \geq v$.

Take integers $b \geq a>0$ and a smooth $X \in\left|\mathcal{O}_{F_{1}}(a h+b f)\right|$. Note that X is connected.

Fix positive integers a and b. The restriction maps $\eta_{x, a, b}$ are surjective for all $x \geq 2$ if and only if $h^{1}\left(\mathcal{O}_{F_{1}}((x-a) h+(t x-b) f)\right)=0$ for all $x \geq 2$. Recall that $t \geq 3$ and $\mathcal{O}_{F_{1}}(1)=\mathcal{O}_{F_{1}}(h+t f)$. First assume $x \geq a$. In this case $h^{1}\left(\mathcal{O}_{F_{1}}((x-a) h+(t x-b) f)\right)=0$ if and only if $t x-b \geq x-a-1$ (Remark 3.4) and this is the case if and only if $b \leq t a+1$. If $x=a-1$, then $h^{1}\left(\mathcal{O}_{F_{1}}((x-a) h+(t x-b) f)\right)=0$ for any b (Remark 3.4). Now assume $x \leq a-2$. Since $x \geq 2$ we are assuming $a \geq 4$. Thus $\eta_{x, a, b}$ is surjective for all $x \geq 2$ if and only if $t a-2 t \leq b \leq t a+1$. Note that an element of $\left|\mathcal{O}_{F_{1}}(a h+b f)\right|$ has degree $t a+b-a$. Thus for a fixed a we get all integers between $2 t a-2 t-a$ and $2 t a+1-a$. Note that the maximum of this set of integers for the integer a is smaller than the minimum one arising for the integer $a+1$. We add the non-degenerate maximal rank curves coming from the integers $a=1,2,3$. The non-degeneracy gives no restriction if $a>1$, while if $a=1$ we need $b>t$ and hence $b=t+1$. Thus as in the case with even $r \geq 6$ we get as degrees of maximal rank, but not aCM, curves of all degrees $d \geq r+1$.

3.3. Case $r=4$

Call $\phi: \mathbb{P}^{2} \rightarrow \mathbb{P}^{5}$ the order 2 Veronese embedding. Set $W:=\phi\left(\mathbb{P}^{2}\right)$. The Veronese surface is aCM and a general linear projection Y of it in \mathbb{P}^{4} is isomorphic to it. Thus for each integer $a \geq 3$ and any smooth degree a plane curve $A \subset \mathbb{P}^{2}$ we get a smooth curve $\phi(A)$ with degree $2 a$ and genus $(a-1)(a-2) / 2=\pi(2 a, 5)$. The curve $\phi(A)$ is aCM, because W is aCM and $h^{1}\left(\mathcal{O}_{\mathbb{P}^{2}}(a-t)\right)=0$ for all $t \in \mathbb{N}$, i.e., for all $t \in \mathbb{N}$ the restriction map $H^{0}\left(\mathcal{O}_{W}(t)\right) \rightarrow H^{0}\left(\mathcal{O}_{\phi(A)}(t)\right)$ is surjective. Let $X \subset Y$ be the image of $\phi(A)$ by the isomorphic linear projection $W \rightarrow Y$. It is well-known that $h^{1}\left(\mathcal{I}_{Y}(t)\right)=0$ for all $t \geq 2$ (this also follows from the case $(d, k)=(2,4)$ of [2, Theorem 3]). Since all restriction maps $H^{0}\left(\mathcal{O}_{W}(t)\right) \rightarrow H^{0}\left(\mathcal{O}_{\phi(A)}(t)\right), t \geq 2$, are surjective, X has maximal rank. Since X is not linearly normal, X is not aCM. Since $a \geq 3$, X is non-degenerate. Note that we really need to exclude the case $a=2$, because the only non-degenerate degree 4 curves of \mathbb{P}^{4} are the rational normal curves, which are aCM.

Proof of part (2) of Theorem 1.1. For r even and $r \geq 6$ we use the linear projection of the embeddings of F_{0}. For all odd $r \geq 5$ we use the linear projections of the embeddings of F_{1}. Remark 3.1 gives that if $X \subset \mathbb{P}^{r}$ arises in that way we have $p_{a}(X)=\pi(\operatorname{deg}(X), r+1)$.
Remark 3.5. We explain the existence for all integers $d \geq r, r \geq 4$, of smooth, aCM and non-degenerate curves $X \subset \mathbb{P}^{r}, r \geq 4$, with $p_{a}(X)=\pi(d, r)$. If r is odd use the images of the smooth curves $X \in\left|\mathcal{O}_{F_{0}}\left(a h+a \frac{r-1}{2} f\right)\right|$ by the embedding of F_{0} induced by the complete linear system $\left|\mathcal{O}_{F_{0}}\left(h+\frac{r-1}{2} f\right)\right|$. If r is even use the images of the smooth curves $X \in\left|\mathcal{O}_{F_{1}}\left(a h+a \frac{r}{2} f\right)\right|$ by the embedding of F_{1} induced by the complete linear system $\left|\mathcal{O}_{F_{1}}\left(h+\frac{r}{2} f\right)\right|$; note that these linearly normal examples work even when $r=4$, because $\mathcal{O}_{F_{1}}(h+2 f)$ is very ample and $h^{0}\left(\mathcal{O}_{F_{1}}(h+2 f)\right)=5$.

4. Genus $g<\pi(d, r+1)$

Remark 4.1. Let $W \subset \mathbb{P}^{n}, n \geq 3$, be an integral and non-degenerate surface of degree n, i.e., the next degree after the minimal one for non-degenerate surfaces. T. Fujita studied these surfaces (and their higher dimensional generalization) in the set-up of polarized varieties with Δ-genera 1 (more precisely, either they have Δ-genus 1 or they are the isomorphic linear projection of a polarized variety of Δ-genus 0). By [4, Theorem 1.2] they are either normal, aCM and anti-canonically embedded (often called normal del Pezzo surfaces) or exterior linear projection of minimal degree surfaces of \mathbb{P}^{n+1}. In the latter case if W is smooth we run in the case which we have handled in Section 3 and which only gives degree d maximal rank curves of genus $\pi(d, n+1)$; if W is singular, still no new smooth curve may arise in this way and so the degree d maximal rank curves contained in them have genus $\pi(d, n+1)$. We recall that the classification of so-called normal del Pezzo surfaces is quite complicated if we
allow non-Gorestein singularities or we allow that ω_{W} is not ample ($[5,10]$), but for us it is sufficient to look at normal Gorenstein surfaces for which ω_{W} is a line bundle and ω_{W}^{*} is ample (we even only need them when ω_{X}^{*} is very ample). In this case there is a complete and easy classification ($[15,16]$). The main point is that in this case the surface $Y \subset \mathbb{P}^{n}$ is anticanonically embedded and it is either the cone over a linearly normal elliptic curve of \mathbb{P}^{n-1} or it is the one described in [7] as the image of a blowing up of \mathbb{P}^{2} by a system of plane cubics (when W is not smooth it corresponds to the sequences of blowing ups in almost general position in the terminology of [7]). In the latter cases we have $n \leq 9$ and hence they give examples in the set-up of Proposition 1.2 only for $r:=n-1 \leq 8$. We only do the cases which gives examples for $r=7,8$.

Remark 4.2. The effective Weil divisors of cones are described in [12, Ex. II.6.3 and Ex. V.2.9]. Fix a hyperplane $H \subset \mathbb{P}^{n}$ and $o \in \mathbb{P}^{n} \backslash\{o\}$. Fix a smooth and non-degenerate curve $C \subset H$ and let $W \subset \mathbb{P}^{n}$ denote the cone with vertex o and base C. Let $\ell_{1}: W \backslash\{o\} \rightarrow C$ denote the morphism induced by the linear projection from o. Let $X \subset W$ be a smooth and non-degenerate curve. If $o \notin X$, then ℓ_{1} induces a morphism $\ell: X \rightarrow C$. If $o \in X$, then $\ell_{1 \mid X \backslash\{o\}}$ induces a morphism $\ell: X \rightarrow C$, because C and X are assumed to be smooth. Set $a:=\operatorname{deg}(\ell)$. Since X is non-degenerate, we have $a \geq 2$. If $o \notin X$, we have $\operatorname{deg}(X)=a \operatorname{deg}(C)$, because $\mathcal{O}_{X}(1) \cong \ell^{*}\left(\mathcal{O}_{C}(1)\right)$. If $o \in X$, we have $\operatorname{deg}(X)=a \operatorname{deg}(C)+1$, because $\mathcal{O}_{X}(1) \cong \ell^{*}\left(\mathcal{O}_{C}(1)\right)(o)$ (here we use that o is a smooth point of X). Thus for all smooth and non-degenerate curves $X \subset W$ there is an integer $a \geq 2$ such that either $\operatorname{deg}(X)=a \operatorname{deg}(W)$ or $\operatorname{deg}(X)=a \operatorname{deg}(W)+1$. For this statement the smoothness of X is essential. Now take as $W \subset \mathbb{P}^{r+1}$ a cone over a linearly normal elliptic curve of \mathbb{P}^{r}. We have $\operatorname{deg}(W)=r+2$. Thus for a fixed r the degrees d of the smooth curves contained in such cones are very restrictive: $d \equiv 0,1(\bmod r+2)$. By Remark 4.1 we get that for $r \geq 9$ the only possible integers d appearing as smooth curves with genus $\pi_{1}(d, r+1)$ are $\equiv 0,1(\bmod r+2)$, contrary to the case of Theorem 1.1.

4.1. Y rational

In this case W is the image by the anticanonical linear system of a sequence of $c:=9-r$ blowing-ups starting with \mathbb{P}^{2} and the sequence is called in almost general position. Since $c \geq 0$, this implies $r \leq 9$ and if $r=9$ we just have the order 3 Veronese embedding of \mathbb{P}^{2}. We do only the cases $r=7,8$, because the lower r are messy (just to give a sample, look at [13] in which the only problem is to find that all pairs (d, g) in certain ranges are realized (and here the 5 points are assumed to be in general position)).

Example 4.3. Assume $r=8$. In this case Y is an isomorphic linear projection of the order 3 Veronese embedding W of \mathbb{P}^{2}. Let $X^{\prime} \subset W$ be the image of a degree m integral curve of \mathbb{P}^{2}. We have $g:=p_{a}(X)=(m-1)(m-2) / 2$ and $d:=\operatorname{deg}\left(X^{\prime}\right)=3 m$. Thus $g=(d-3)(d-6) / 18$. The curve X^{\prime} is aCM and
its isomorphic linear projection in \mathbb{P}^{8} has maximal rank, but it is not aCM, because it is not linearly normal.
Example 4.4. Assume $r=7$. In this case the surface $W \subset \mathbb{P}^{7}$ whose isomorphic linear projection gives the example is smooth and it is the embedding of F_{1} by its anticanonical linear system $\left|\mathcal{O}_{F_{1}}(2 h+3 f)\right|$. We use the notation of section 3. Suppose that $C \subset Y$ is the image of an integral curve $X \in\left|\mathcal{O}_{F_{1}}(a h+b f)\right|$ with $a>0, b>0$ and $b \geq a$. To have X and C non degenerate we need either $b \geq 4$ or $(a, b)=(3,3)$. We have $d:=\operatorname{deg}(X)=2 b+3 a-2 a=2 b+a$ and $g:=p_{a}(X)=1+a b-\left(a^{2}+a\right) / 2$. We are in the set-up of Remark 2.1. Fix an integer $t>0$. Let $Y \subset \mathbb{P}^{7}$ be a general linear projection from \mathbb{P}^{8} of the anticanonical embedding of F_{1}. By [2] we have $h^{1}\left(\mathcal{I}_{Y}(t)\right)=0$ for all $t \geq 2$. By Remark 2.1 we have $h^{1}\left(\mathcal{I}_{X}(t)\right)=0$ if and only if $h^{1}\left(\mathcal{O}_{F_{1}}((2 t-a) h+(3 t-b) f)\right)=0$. We quote the case $e=1$ of Section 3. If $a=2 t+1$ we have $h^{1}\left(\mathcal{O}_{F_{1}}((2 t-a) h+(3 t-b) f)\right)=0$ for any b. If $a \leq 2 t$ we have $h^{1}\left(\mathcal{O}_{F_{1}}((2 t-a) h+(3 t-b) f)\right)=0$ if and only if $3 t-b \geq 2 t-a-1$, i.e., $b \leq a+t+1$. If $a \geq 2 t+2$ we have $h^{1}\left(\mathcal{O}_{F_{1}}((2 t-a) h+(3 t-b) f)\right)=0$ if and only if $3 t-b \leq 2 t-a$, i.e., $b \leq a+t$.
Proof of Proposition 1.2. Assume for the moment $\sigma(X)>2$. Taking a general hyperplane section and using the definition of $\sigma(X)$ we get $d \geq\binom{ r+1}{2}$. Claim 2 of Remark 2.7 gives a contradiction. Thus $\sigma(X)=2$. First assume $h^{1}\left(\mathcal{I}_{X}(1)\right)=0$. Thus (2.1) gives $s(X)=2$ and that the restriction map $H^{0}\left(\mathcal{I}_{X}(2)\right) \rightarrow H^{0}\left(H, \mathcal{I}_{X \cap H, H}(2)\right)$ is surjective, Lemma 2.2 gives that X is aCM, a contradiction. Thus X is an isomorphic projection of $X^{\prime} \subset \mathbb{P}^{r+1}$. Apply [11, Corollary 3.17] to X^{\prime}.

5. Reducible curves with maximal rank

We only consider reduced curves and so our curves in this section are irreducible if and only if they are integral. In the case $r=3$ there is a complete description of all (d, g) for with there is a reducible aCM space curve, but no irreducible aCM space curve ($[9,17]$) and this description is exploited in [6] from the geometric point of view. No such description is known for $r>3$ (and it is not expected, since we not even know the triples (d, g, r) for which aCM curves exists). Much less is expected for maximal rank curves. However for $r \geq 5$ we construct in this section several examples of reducible maximal rank curves, but not aCM, with degree d and arithmetic genus g with (d, g) not covered by any integral maximal rank curve. Take a reduced maximal rank curve $X \subset \mathbb{P}^{r} . X$ is degenerate if and only if $h^{0}\left(\mathcal{I}_{X}(1)\right) \neq 0$, i.e., $h^{0}\left(\mathcal{I}_{X}(t)\right) \neq 0$ for all $t>0$. Since X has maximal rank by assumption, it is aCM and X is just an aCM curve in some proper linear subspace of \mathbb{P}^{r}. Thus it is not restrictive to focus our attention on the case of maximal rank non-degenerate curves. We claim that for $r \geq 5$ the examples given in part (2) of Theorem 1.1 and in Examples 4.3, 4.4 or in Remark 4.2 have $h^{0}\left(\mathcal{I}_{X}(2)\right) \geq 2$. Note that in all these examples we have $h^{0}\left(\mathcal{I}_{X}(1)\right)=0$ and
$h^{1}\left(\mathcal{I}_{X}(1)\right)=1$. The long cohomology exact sequence of the exact sequence (2.1) gives $h^{0}\left(\mathcal{I}_{X}(2)\right) \geq h^{0}\left(H, \mathcal{I}_{X \cap H, H}(2)\right)-1$. Since X has maximal rank, but it is not aCM, Lemma 2.2 shows that if $h^{0}\left(H, \mathcal{I}_{X \cap H, H}(2)\right)-1>0$, then $h^{0}\left(\mathcal{I}_{X}(2)\right)=h^{0}\left(H, \mathcal{I}_{X \cap H, H}(2)\right)-1$. Thus for $r \geq 5$ the examples given in part (2) of Theorem 1.1 have $h^{0}\left(\mathcal{I}_{X}(2)\right)=\binom{r+1}{2}-2(r-1)-2$, while the examples used in Proposition 1.2 have $h^{0}\left(\mathcal{I}_{X}(2)\right)=\binom{r+1}{2}-2 r-1$. Thus there are many examples with large $h^{0}\left(\mathcal{I}_{X}(2)\right)$.

In this section we prove the following result.
Proposition 5.1. Let $X \subset \mathbb{P}^{r}, r \geq 5$, be a reduced and connected maximal rank curve having an irreducible component T spanning \mathbb{P}^{r}. Assume $h^{0}\left(\mathcal{I}_{X}(2)\right) \geq 2$ and set $a:=\left\lfloor h^{0}\left(\mathcal{I}_{X}(2)\right) / 2\right\rfloor$. Fix an integer b such that $1 \leq b \leq a$. Let $Y \subset \mathbb{P}^{r}$ be the union of X and b general lines L_{1}, \ldots, L_{b}, each of them intersecting quasi-transversally T and at a unique point. Then $\operatorname{deg}(Y)=\operatorname{deg}(X)+b$, $p_{a}(Y)=p_{a}(X), h^{0}\left(\mathcal{I}_{Y}(2)\right)=h^{0}\left(\mathcal{I}_{X}(2)\right)-2 b$ and Y has maximal rank, but it is not aCM.

Proof. The word "quasi-transversally" means that for each L_{i} we have $L_{i} \cap$ $\operatorname{Sing}(T)=\emptyset$ and that at each $q \in T \cap L_{i}$ the line L_{i} is not the tangent line to T at q. Note that the set $A(T)$ of all lines $L \subset \mathbb{P}^{r}$ intersecting T at a unique point and quasi-transversally is a non-empty and irreducible quasi-projective variety of dimension r (use that $\operatorname{dim} T=1$ and that for each $p \in \mathbb{P}^{r}$ the set of all lines of \mathbb{P}^{r} containing p is a projective space of dimension $r-1$). Thus it makes sense to speak about the general point of $A(T)$, i.e., of general L_{i} 's. With our formulation of the proposition the case $b=1$ gives the general case (if $b>1$ use induction on b and apply the case $b=1$ to the same T and the maximal rank curve $X^{\prime}:=X \cup L_{1} \cup \cdots \cup L_{b-1}$ which have $\left.h^{0}\left(\mathcal{I}_{X^{\prime}}(2)\right)=h^{0}\left(\mathcal{I}_{X}(2)\right)-2 b+2 \geq 2\right)$, except the statement that Y is not aCM. Thus until step (f) we assume $b=1$ and write $L:=L_{1}$. Fix a general $L \in A(T)$ and set $W:=X \cup L$. Since $L \cap T \neq \emptyset$ and X is connected, W is connected.
(a) In this step we check that $p_{a}(W)=p_{a}(X)$. We have $|T \cap L|=1$ because $r>2, \operatorname{dim} A(T)=r$ and T has only ∞^{2} secant lines. Since $\operatorname{Sing}(X)$ is a finite set, there are only ∞^{1} lines containing a smooth point of T and a singular point of X. Thus $L \cap \operatorname{Sing}(X)=\emptyset$. Since $\operatorname{dim} A(T)>1, T$ has only ∞^{1} tangent lines and $L \cap \operatorname{Sing}(X)=\emptyset, L$ intersects quasi-transversally T. Since $|L \cap T|=1$ and L intersects quasi-transversally T. Thus it is sufficient to prove that $L \cap E=\emptyset$ for each irreducible component E of X such that $E \neq T$ (if any). Indeed, for any $q \in \mathbb{P}^{r}$ and any reduced curve $F \subset \mathbb{P}^{r}$ with $q \notin F$ we have $R \cap F=\emptyset$ for the general line $R \subset \mathbb{P}^{r}$ containing q.
(b) Since $W \supset T$, we have $h^{0}\left(\mathcal{I}_{W}(t)\right)=0$ for all $t \leq 1$. Thus to prove that W has maximal rank it is sufficient to prove that $h^{1}\left(\mathcal{I}_{W}(t)\right)=0$ for all $t \geq 2$. In this step we prove that $h^{0}\left(\mathcal{O}_{W}(t)\right)=h^{0}\left(\mathcal{O}_{X}(t)\right)+t$. Consider the Mayer-Vietoris exact sequence

$$
\begin{equation*}
0 \rightarrow \mathcal{O}_{W}(t) \rightarrow \mathcal{O}_{X}(t) \oplus \mathcal{O}_{L}(t) \rightarrow \mathcal{O}_{X \cap L}(t) \rightarrow 0 \tag{5.1}
\end{equation*}
$$

which only requires that L is not an irreducible component of X and in which $X \cap L$ is the scheme-theoretic intersection. Thus $h^{0}\left(\mathcal{O}_{X \cap L}(t)\right)=\operatorname{deg}(X \cap T)$. By step (a) we have $\operatorname{deg}(X \cap L)=1$. Since L is a line, $\operatorname{deg}(X \cap L)=1$ and $t \geq 0$, we have $h^{0}\left(\mathcal{O}_{L}(t)\right)=t+1$ and the restriction map $H^{0}\left(\mathcal{O}_{L}(t)\right) \rightarrow H^{0}\left(\mathcal{O}_{X \cap L}(t)\right.$ is surjective. Thus (5.1) gives $h^{0}\left(\mathcal{O}_{W}(t)\right)=h^{0}\left(\mathcal{O}_{X}(t)\right)+t$.
(c) Now we check that $h^{0}\left(\mathcal{I}_{W}(2)\right)=h^{0}\left(\mathcal{I}_{X}(2)\right)-2$. Since $h^{0}\left(\mathcal{O}_{W}(2)\right)=$ $h^{0}\left(\mathcal{O}_{X}(2)\right)+2$ by step (a), we have $h^{0}\left(\mathcal{I}_{W}(2)\right) \geq h^{0}\left(\mathcal{I}_{X}(2)\right)-2$ and so we only need to prove that $h^{0}\left(\mathcal{I}_{W}(2)\right) \leq h^{0}\left(\mathcal{I}_{X}(2)\right)-2$. Fix $q \in T_{\text {reg }}$ and call R_{q} a general line containing q. It is sufficient to prove that $h^{0}\left(\mathcal{I}_{X \cup R_{q}}(2)\right) \leq$ $h^{0}\left(\mathcal{I}_{X}(2)\right)-2$ for a general q. Since R_{q} contains a general point $p \in \mathbb{P}^{r}$ and $h^{0}\left(\mathcal{I}_{X}(2)\right)>0$, we have $h^{0}\left(\mathcal{I}_{X \cup R_{q}}(2)\right) \leq h^{0}\left(\mathcal{I}_{X \cup\{p\}}(2)\right)=h^{0}\left(\mathcal{I}_{X}(2)\right)-1$ for any q. Thus it is sufficient to prove that a general element of $\left|\mathcal{I}_{X \cup\{p\}}(2)\right|$ does not contain R_{q} if q is general in T. Since $h^{0}\left(\mathcal{I}_{X}(2)\right) \geq 2$ and p is general in \mathbb{P}^{r}, this is the case if and only if a general $Q \in\left|\mathcal{I}_{X}(2)\right|$ is a cone with vertex containing q. This is not the case for a general $q \in T$, because T spans \mathbb{P}^{r} and the singular locus of a quadric hypersurface of \mathbb{P}^{r} is a proper linear subspace of \mathbb{P}^{r}.
(d) Now we check that for each integer $t \geq 2$ we have $h^{0}\left(\mathcal{I}_{W}(t)\right)=h^{0}\left(\mathcal{I}_{X}(t)\right)$ $-t$. Set $\{q\}:=X \cap L$. Since $h^{0}\left(\mathcal{O}_{W}(t)\right)=h^{0}\left(\mathcal{O}_{X}(t)\right)+t$ by step (a), we have $h^{0}\left(\mathcal{I}_{W}(t)\right) \geq h^{0}\left(\mathcal{I}_{X}(t)\right)-t$ and so we only need to prove that $h^{0}\left(\mathcal{I}_{W}(t)\right) \leq$ $h^{0}\left(\mathcal{I}_{X}(t)\right)-t$. In step (c) we proved the case $t=2$. Thus we may assume $t>2$. Since the restriction map $H^{0}\left(\mathcal{O}_{\mathbb{P}^{r}}(t)\right) \rightarrow H^{0}\left(\mathcal{O}_{X}(t)\right)$ is surjective and $L \cap X=$ $\{q\}$ as schemes, it is sufficient to prove the surjectivity of the restriction map λ_{t} : $H^{0}\left(\mathbb{P}^{r}, \mathcal{I}_{X}(t)\right) \rightarrow H^{0}\left(L, \mathcal{I}_{\{q\}, L}(t)\right)$. We use induction on t. Fix a general $S \subset L$ such that $|S|=t$ and write $S=\left\{o_{1}, \ldots, o_{t}\right\}$ and set $S_{i}:=\left\{o_{1}, \ldots, o_{i}\right\}$. Since $h^{0}\left(L, \mathcal{I}_{\{q\}, L}(t)\right)=t$, it is sufficient to prove that $h^{0}\left(\mathcal{I}_{X \cup S_{i}}(t)\right) \leq h^{0}\left(\mathcal{I}_{X}(t)\right)-i$ for $i=1, \ldots, t$. Step (c) gives the existence of $Q \in\left|\mathcal{I}_{X}(2)\right|$ such that $X \cap L=$ $\left\{q, o_{1}\right\}$. The union of Q and $t-2$ general hyperplanes gives $h^{0}\left(\mathcal{I}_{X \cup\left\{o_{1}\right\}}(t)\right)=$ $h^{0}\left(\mathcal{I}_{X}(t)\right)-1$. Let H_{i} be a general hyperplane of \mathbb{P}^{r} containing $\left\{o_{i}\right\}$. Let M_{i} be a general hyperplane (so $S \cap M_{i}=\emptyset$ for all i). The degree t hypersurface $Q \cup\left(\bigcup_{h=1}^{i} H_{i}\right) \cup\left(\bigcup_{h=i+1}^{t} M_{h}\right)$ gives $h^{0}\left(\mathcal{I}_{X \cup S_{i}}(t)\right)<h^{0}\left(\mathcal{I}_{X \cup S_{i-1}}(t)\right)$.
(e) Steps (a) and (d) prove that W has maximal rank.
(f) Now for any $b \geq 1$ we prove that $X \cup L_{1} \cup \cdots \cup L_{b}$ is not aCM. As in step (a) we get $h^{0}\left(\mathcal{O}_{X \cup L_{1} \cup \ldots \cup L_{b}}(1)\right)=h^{0}\left(\mathcal{O}_{X}(1)\right)+b \geq r+1+b$ and so $X \cup L_{1} \cup \cdots \cup L_{b}$ is not linearly normal.

Remark 5.2. Take $r \geq 5$ and a pair (d, g) such that $d \geq r+1$ and $g=\pi(d, r+1)$. By part (2) of Theorem 1.2 there is a smooth, integral and non-degenerate curve $X \subset \mathbb{P}^{r}$ with $\operatorname{deg}(X)=d, p_{a}(X)=g$ and maximal rank, but it is not aCM. We saw before Proposition 5.1 that $h^{0}\left(\mathcal{I}_{X}(2)\right) \geq 2$ and hence the case $b=1$ of Proposition 5.1 shows that $(d+1, g)$ is realized by some reducible curve with maximal rank, but not aCM. We need to find (d, g, r) for which $(d+1, g, r)$ is not realized by any X. Obviously $\pi_{1}(d+1, r+1)>\pi_{1}(d, r+1)$. For $d \gg 0$
we have $\pi_{1}(d+1, r+1) \sim d^{2} /(2 r+2)$ and hence $\pi_{1}(d+1, r+1)<\pi(d, r+1)$. Apply part (1) of Proposition 1.2.

References

[1] A. Alzati and F. Russo, On the k-normality of projected algebraic varieties, Bull. Braz. Math. Soc. (N.S.) 33 (2002), no. 1, 27-48. https://doi.org/10.1007/s005740200001
[2] E. Ballico and P. Ellia, On projections of ruled and Veronese surfaces, J. Algebra 121 (1989), no. 2, 477-487. https://doi.org/10.1016/0021-8693(89)90078-1
[3] E. Ballico, P. Ellia, and C. Fontanari, Maximal rank of space curves in the range A, Eur. J. Math. 4 (2018), no. 3, 778-801. https://doi.org/10.1007/s40879-018-0235-z
[4] M. Brodmann and P. Schenzel, Arithmetic properties of projective varieties of almost minimal degree, J. Algebraic Geom. 16 (2007), no. 2, 347-400. https://doi.org/10. 1090/S1056-3911-06-00442-5
[5] I. A. Cheltsov, Del Pezzo surfaces with nonrational singularities, Math. Notes 62 (1997), no. 3-4, 377-389 (1998); translated from Mat. Zametki 62 (1997), no. 3, 451-467. https: //doi.org/10.1007/BF02360880
[6] L. Chiantini and F. Orecchia, Plane sections of arithmetically normal curves in \mathbb{P}^{3}, in Algebraic curves and projective geometry (Trento, 1988), 32-42, Lecture Notes in Math., 1389, Springer, Berlin, 1989. https://doi.org/10.1007/BFb0085922
[7] M. Demazure, Surfaces de Del Pezzo, I, II, III, IV, V, Séminaire sur les Singularités des Surfaces, Palaiseau, France 1976-1977, Lect. Notes in Mathematics 777, Springer, Berlin, 1980.
[8] A. Dolcetti, Maximal rank space curves of high genus are projectively normal, Ann. Univ. Ferrara Sez. VII (N.S.) 35 (1989), 17-23 (1990).
[9] G. Ellingsrud, Sur le schéma de Hilbert des variétés de codimension 2 dans \mathbf{P}^{e} à cône de Cohen-Macaulay, Ann. Sci. École Norm. Sup. (4) 8 (1975), no. 4, 423-431.
[10] T. Fujisawa, On non-rational numerical del Pezzo surfaces, Osaka J. Math. 32 (1995), no. 3, 613-636. http://projecteuclid.org/euclid.ojm/1200786269
[11] J. Harris, Curves in projective space, Séminaire de Mathématiques Supérieures, 85, Presses de l'Université de Montréal, Montreal, QC, 1982.
[12] R. Hartshorne, Algebraic Geometry, Springer-Verlag, New York, 1977.
[13] \qquad , Genre des courbes algébrique dans l'espace projectif (d'après L. Gruson et C. Peskine), Bourbaki Seminar, Vol. 1981/1982, pp. 301-313, Astérisque, 92-99, Soc. Math. France, Paris, 1983.
[14] R. Hartshorne and A. Hirschowitz, Nouvelles courbes de bon genre dans l'espace projectif, Math. Ann. 280 (1988), no. 3, 353-367. https://doi.org/10.1007/BF01456330
[15] F. Hidaka and K. Watanabe, Normal Gorenstein surfaces with ample anti-canonical divisor, Tokyo J. Math. 4 (1981), no. 2, 319-330. https://doi.org/10.3836/tjm/ 1270215157
[16] F. Sakai, Anticanonical models of rational surfaces, Math. Ann. 269 (1984), no. 3, 389-410. https://doi.org/10.1007/BF01450701
[17] T. Sauer, Smoothing projectively Cohen-Macaulay space curves, Math. Ann. 272 (1985), no. 1, 83-90. https://doi.org/10.1007/BF01455929

Edoardo Ballico
Department of Mathematics
University of Trento
38123 Povo (TN), Italy
Email address: ballico@science.unitn.it

[^0]: Received October 8, 2018; Revised March 5, 2019; Accepted May 23, 2019.
 2010 Mathematics Subject Classification. 14H50.
 Key words and phrases. projective curve, Hilbert function, curve of maximal rank, aCM curve.

 The author was partially supported by MIUR and GNSAGA of INdAM (Italy).

