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CURVES WITH MAXIMAL RANK, BUT NOT ACM, WITH

VERY HIGH GENERA IN PROJECTIVE SPACES

Edoardo Ballico

Abstract. A curve X ⊂ Pr has maximal rank if for each t ∈ N the

restriction map H0(OPr (t))→ H0(OX(t)) is either injective or surjective.
We show that for all integers d ≥ r + 1 there are maximal rank, but not

arithmetically Cohen-Macaulay, smooth curves X ⊂ Pr with degree d and

genus roughly d2/2r, contrary to the case r = 3, where it was proved that

their genus growths at most like d3/2 (A. Dolcetti). Nevertheless there is

a sector of large genera g, roughly between d2/(2r + 2) and d2/2r, where

we prove the existence of smooth curves (even aCM ones) with degree
d and genus g, but the only integral and non-degenerate maximal rank

curves with degree d and arithmetic genus g are the aCM ones. For some

(d, g, r) with high g we prove the existence of reducible non-degenerate
maximal rank and non aCM curves X ⊂ Pr with degree d and arithmetic

genus g, while (d, g, r) is not realized by non-degenerate maximal rank
and non aCM integral curves.

1. Introduction

Let X ⊂ Pr, r ≥ 3, be an integral and non-degenerate curve. Set d :=
deg(X) and g := pa(X). We recall that X is said to be arithmetically Cohen-
Macaulay (or aCM for short) if h1(IX(t)) = 0 for all t ∈ N and that it is said
to have maximal rank if for each t ∈ N either h0(IX(t)) = 0 or h1(IX(t)) =
0. Thus if X has maximal rank and for some t ∈ N we know the integer
h0(OX(t)), then we know the integers h0(IX(t)) = max{0,

(
r+t
t

)
− h0(OX(t))}

and h1(IX(t)) = max{0, h0(OX(t))−
(
r+t
t

)
}. An aCM curve has maximal rank,

but easy examples show that the converse does not hold. In the case r = 3
all pairs (d, g) realized by some integral (and then by some smooth, too) aCM
curve are known ([9,17]). For all integers d ≥ r set π(d, r) :=

(
m
2

)
(r− 1) +mε,

where m := b(d − 1)/(r − 1)c and ε := d − 1 −m(r − 1). We recall that for
any non-degenerate X Castelnuovo proved that g ≤ π(d, r) and classified the
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1356 E. BALLICO

curves with g = π(d, r) ([11, Theorems 3.7 and 3.11]). Such curves exist for all
d ≥ r. Note that

lim
d→+∞

π(d, r)/d2 =
1

2r − 2
.

A. Dolcetti proved the existence of a real number K > 0 such that if the
pair (d, g) is realized by a maximal rank, but not aCM, curve X ⊂ P3 (i.e.,
d := deg(X) and g := pa(X)), then g ≤ Kd3/2. As far as we know the family
of maximal rank space curves which asymptotically for large d have the largest
ratio d3/2/g are the ones constructed by A. Hirschowitz and R. Hartshorne in
[14, 5.4, 5.5 and 5.8] (see [8, Example 1.7] for a description of the pairs (d, g)
obtained in this way). There is a smaller positive real number K1 such that
for all d � 0 and all g ≤ K1d

3/2 there is a smooth maximal rank space curve
X ⊂ P3 with degree d and genus g and these curves are not aCM, except for a
few pairs (d, g) ([3]). The aim of this note is to prove that Dolcetti’s result is
peculiar to the case r = 3. We show this claim proving the following result.

Theorem 1.1. Fix an integer r ≥ 4.

(1) If (d, g) is realized by some non-degenerate integral maximal rank curve
X ⊂ Pr, which is not aCM, then g ≤ π(d, r + 1).

(2) For each r ≥ 5 and each integer d ≥ r+ 1 there is a smooth, connected
and non-degenerate maximal rank curve in Pr with degree d, genus
π(d, r + 1) and not aCM.

(3) For each even integer d ≥ 6 there is a smooth, connected and non-
degenerate maximal rank curve in P4 with degree d, genus π(d, 5) and
not aCM.

For all integers d ≥ r there are smooth and non-degenerate aCM curves
X ⊂ Pr with degree d and genus π(d, r) (Remark 3.5) and so part (1) of
Theorem 1.1 shows that to be of maximal rank, but not aCM, gives a (small)
restriction on the growth of the genera. Parts (2) and (3) of Theorem 1.1 show
that for r > 3 the growth is still quadratic in d. We stress that the restriction in
part (1) does not arise for aCM curves (Remark 3.5). In Section 4 we prove the
existence of maximal rank, but not aCM, curves with high genus g < π(d, r+1).
More precisely the maximal genus < π(d, r) is the integer π1(d, r+1), which we
define here following [11, Theorem 3.15 and Section 3.c]. For all integers r ≥ 4
and d ≥ 2r+1 set π1(d, r) :=

(
m1

2

)
r+m1(ε1 +1)+µ1, where m1 := b(d−1)/rc,

ε1 := d −m1r − 1, µ1 := 1 if ε1 = r − 1 and µ1 := 0 if ε1 6= r − 1. Note that
limd→+∞ π1(d, r)/d2 = 1

2r .
We prove the following result.

Proposition 1.2. Fix integers r ≥ 5, d ≥ 2r+ 3, and g < π(d, r+ 1). If there
is an integral, non-degenerate maximal rank, but not aCM, curve X ⊂ Pr with
degree d and genus g, then g ≤ π1(d, r + 1).
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For r ≥ 9 the only integers for which there is a smooth curve of degree d
and genus π1(d, r+ 1) are ≡ 0, 1 (mod r+ 2) (Remark 4.2). See Examples 4.3
and 4.4 for existence results in the set-up of Proposition 1.2 for r = 7, 8.

All the curves with maximal rank with very large genus appearing in Theo-
rem 1.1 and potentially appearing in the set-up of Proposition 1.2 are contained
in a quadric hypersurface. If we impose that the minimal degree of a hypersur-
face containing the curve X is at least 3 there are stronger upper bounds (but
still quadratic in d) for the genus (Corollary 2.6).

In Section 5 we consider reducible, connected and non degenerate curves
W ⊂ Pr with maximal rank, but they are not aCM and for which there is no
integral, non-degenerate curve X ⊂ Pr with maximal rank and not aCM and
with (deg(X), pa(X)) = (deg(W ), pa(W )) (Remark 5.2).

We work over an algebraically closed field with characteristic 0.
We thank the referee for useful observations.

2. Preliminary results

Let X ⊂ Pr be an integral and non-degenerate curve. Let s(X) denote the
minimal positive integer x such that h0(IX(x)) > 0. Since X is non-degenerate,
we have s(X) ≥ 2. Let H ⊂ Pr be a general hyperplane. Consider the exact
sequence

(2.1) 0→ IX(t− 1)→ IX(t)→ IX∩H,H(t)→ 0.

Let σ(X) be the minimal integer x such that h0(H, IX∩H,H(x)) 6= 0. Obviously,
σ(X) ≤ s(X). Since X is integral, we have h1(IX) = 0. Thus the case t = 1 of
(2.1) gives h0(H, IX∩H,H(1)) = 0, i.e., X ∩H spans H. Thus σ(X) ≥ 2.

Remark 2.1. Several times we will be in the following set-up. Let W ⊂ Pn be
an integral and non-degenerate surface such that W spans Pn, W is aCM and
it is contained in at least one quadric surface; later we will take r = n− 1. Let
C ⊂ W be an integral and non-degenerate curve. Since h0(IW (2)) 6= 0, we
have h1(IC(2)) 6= 0. Thus C has maximal rank if and only if h1(IC(t)) = 0 for
all t ≥ 2, while C is aCM if and only if h1(IC(t)) = 0 for all t > 0 (note that
h1(IC) = 0, because C is integral). Thus C is aCM if and only if it has maximal
rank and it is linearly normal. Since W is aCM, C is aCM (resp. has maximal
rank) if and only if for each integer t > 0 (resp. t ≥ 2) the restriction map
H0(OW (t)) → H0(OC(t)) is surjective. We will always have h1(OW (t)) = 0
for all t > 0. Thus the restriction map H0(OW (t)) → H0(OC(t)) is surjective
if and only if h1(OW (t)(−C)) = 0. Now fix o ∈ Pn \W such that the linear
projection ` : Pn \ {o} → Pn−1 from o maps W isomorphically onto the surface
Y := `(W ) (we need that either n ≥ 6 or n = 5 and W is the Veronese surface).
Hence X := `(C) is isomorphic to C. Suppose that h1(Pn−1, IY (t)) = 0 for
all t ≥ 2 and that C has maximal rank. Since X is not linearly normal, it
is not aCM. We claim that X has maximal rank. Since X spans Pn−1, it is
sufficient to prove that h1(Pn−1, IX(t)) = 0 for all t ≥ 2. Fix an integer t ≥ 2.
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Since ` induces an isomorphism between W and Y and between C and X
and the restriction map H0(OW (t))→ H0(OC(t)) is surjective, the restriction
map H0(OY (t))→ H0(OX(t)) is surjective. Since h1(Pn−1, IY (t)) = 0, we get
h1(Pn−1, IX(t)) = 0.

We recall the following lemma proved for r = 3 in [8, Lemma 1.2]; the same
proof works for any r.

Lemma 2.2. Assume that X has maximal rank. X is aCM if and only if
s(X) = σ(X) and the restriction map H0(IX(s(X)))→ H0(H, IX∩H,H(s(X)))
is surjective.

Remark 2.3. Assume that the non-degenerate curve X ⊂ Pr is linearly nor-
mal, i.e., assume h1(IX(1)) = 0. By (2.1) the restriction map H0(IX(2)) →
H0(IX∩H,H(2)) is surjective. Assume s(X) = 2 and that X has maximal rank.
Since X is integral, we have h1(IX) = 0. Thus the case t = 1 of (2.1) gives
h0(H, IX∩H,H(1)) = 0. Thus σ(X) = 2. Lemma 2.2 shows that X is aCM.

Lemma 2.4. Let X ⊂ Pr be an integral and non-degenerate curve such that
σ(X) > 2. Set d := deg(X) and fix an integer σ such that 2 ≤ σ ≤ σ(X). Let
H ⊂ Pr be a general hyperplane. Set S := X ∩ H and β := h0(H, IS,H(σ)).
Take A,B ⊂ S and an integer α > 0 such that h1(H, IA,H(α)) = 0 and

h0(H, IA,H(α)) > 0. If |B| ≤
(
r+σ−1
r−1

)
−β, then h1(H, IA∪B,H(α+σ)) = 0 and

h0(H, IA∪B,H(α+ σ)) > 0.

Proof. Note that β = 0 if and only if σ < σ(X). Since h0(H, IS,H(σ)) = β,

there is D ⊆ S such that |D| =
(
r+σ−1
r−1

)
− β and h1(H, ID,H(σ)) = 0.

Since S has the Uniform Position Property in the sense of [11, Ch. III],
h1(H, IF,H(σ)) = 0 for all F ⊆ S such that |F | ≤

(
r+σ−1
r−1

)
− β. Since

|A| <
(
r+α−1
r−1

)
, |B| ≤

(
r+σ−1
r−1

)
and

(
r+α−1
r−1

)
+
(
r+σ−1
r−1

)
≤
(
r+α+σ−1

r−1
)
, we have

h0(H, IA∪B,H(α + σ)) > 0. Taking B \ B ∩ A instead of B we reduce to the
case A ∩B = ∅. Set z := |B|. We use induction on the integer z starting with
the trivial case z = 0. Take a general Q ∈ |IA,H(α)|. Since S is in uniform
position, either h1(H, IS,H(α)) = 0 or Q∩ (S \A) = ∅. Since in the former case
the lemma is true, we may assume Q∩ (S \A) = ∅ and in particular Q∩B = ∅.
We may assume z > 0. Take p ∈ B and set B′ := B \ {p}. By the inductive
assumption we have h1(H, IA∪B′,H(α + σ)) = 0. Let Q′ be a general element
of |IB′,H(σ)|. Since h1(H, ID,H(σ)) = 0 and Q′ is general, we have p /∈ Q′.
Thus p /∈ Q∪Q′. Hence h0(H, IA∪B,H(α+σ)) < h0(H, IA∪B′,H(α+σ)). Thus
h1(H, IA∪B,H(α+ σ)) = 0. �

We only use the case σ = 2 of Lemma 2.4 to prove Corollary 2.6, which will
be used to prove part (1) of Theorem 1.1.

Lemma 2.5. Let X ⊂ Pr be an integral and non-degenerate curve such that
σ(X) > 2. Let H ⊂ Pr be a general hyperplane. Set S := X ∩ H and d :=
deg(X). Write d = a

(
r+1
2

)
+ b with a ∈ N and −1 ≤ b ≤

(
r+1
2

)
− 2.
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(a) We have h1(H, IS,H(1)) = d− r and h1(H, IS,H(2)) = d−
(
r+1
2

)
.

(b) We have h1(H, IS,H(t)) = 0 for all t ≥ 2a+ 2.
(c) We have h1(H, IS,H(2a+ 1)) ≤ max{0, b− r + 1}.
(d) If 4 ≤ t ≤ 2a and t = 2x is even we have h1(H, IS,H(t)) ≤ d−x

(
r+1
2

)
+

1.
(e) If 3 ≤ t ≤ 2a − 1 and t = 2x + 1 is odd, we have h1(H, IS,H(t)) ≤

d− x
(
r+1
2

)
+ 1− r.

Proof. Since h0(H, IS,H(2)) = 0, we have d ≥
(
r+1
2

)
and hence part (a) is

trivial. Since H is general, the set S has cardinality d and it is in uniform posi-
tion, i.e., h0(H, IA,H(t)) = h0(H, IB,H(t)) for all t ∈ N and any A,B ⊆ S with
|A| = |B| ([11, page 85]). Since h0(H, IS,H(2)) = 0, we have h1(H, IA,H(2)) = 0

for all A ⊂ S such that |A| ≤
(
r+1
2

)
.

Now we prove part (d). Fix any A ⊂ S with |A| ≤
(
r+1
2

)
− 1. Thus

h0(H, IA,H(2)) =
(
r+1
2

)
− |A| > 0. Take a general Q ∈ |IA,H(2)|. Since S

is in uniform position and Q is general, we have Q ∩ S = A. Write S =
A1 t B2 t · · · t Ba−1 tD with |Bi| =

(
r+1
2

)
for all i and |D| = b. Part (d) is

empty if a = 3. To get part (d) for x = 2 (hence a ≥ 4) use Lemma 2.4 with
α = σ = 2, and B := B1. Then use Lemma 2.4 for α = 2x − 2 and σ = 2
to prove h1(H, IA∪···∪Bx,H(2x)) = 0 by induction on x. This vanishing proves
part (d).

To prove part (b) it is sufficient to prove that h1(H, IS,H(2a+2)) = 0, which

is proved from the case t = 2a using that |D| ≤
(
r+1
2

)
and applying Lemma 2.4

for σ = 2 and α = 2a.
Now we prove part (e). We may assume a ≥ 2, because if a = 1 part (e)

is empty. We fix E ⊂ S with |E| = r − 1. Since S is in uniform position and
it spans H, E spans a hyperplane M of H such that M ∩ S = E. Write S =
EtF1t· · ·tFxtD′ with |Fi| =

(
r+1
2

)
for all i. Apply x times Lemma 2.4, always

with σ = 2 and α = 1, 3, . . . , 2x− 3. We get h1(H, IEtF1t···tFx,H(2x+ 1)) = 0

and so h1(H, IS,H(2x+ 1)) ≤ |D′| = d− r + 1− x
(
r+1
2

)
.

Part (c) follows from part (e) for t = 2a using Lemma 2.4 with α = 2a − 1
and σ = 2. �

Corollary 2.6. Let X ⊂ Pr be an integral and non-degenerate curve such that
σ(X) > 2. Set d := deg(X) and g := pa(X). Write d = a

(
r+1
2

)
+ b with a ∈ N

and −1 ≤ b ≤
(
r+1
2

)
−2. Then g ≤ 2ad−a2

(
r+1
2

)
−ra+a−2+max{0, b−r+1}.

Proof. Let H ⊂ Pr be a general hyperplane. Set S := X ∩H. By the Castel-
nuovo’s method ([11, Corollary 3.2]) we have g ≤

∑
t≥1 h

1(H, IS,H(t)). Parts

(a), (b) and (c) of Lemma 2.5 give h1(H, IS,H(1)) = d−r, h1(H, IS,H(2)) = d−(
r+1
2

)
, h1(H, IS,H(t)) = 0 for all t ≥ 2a+2 and h1(H, IS,H(2a+1)) ≤ max{0, b−

r + 1}. For all integers x such that 2 ≤ x ≤ a we have h1(H, IS,H(2x)) ≤
d−x

(
r+1
2

)
+1 (part (d) of Lemma 2.5). For all integers x such that 1 ≤ x ≤ a−1

we have h1(H, IS,H(2x + 1)) ≤ d − x
(
r+1
2

)
+ 1 − r (part (e) of Lemma 2.5).
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Since
∑a
x=2(d − x

(
r+1
2

)
+ 1) = (a − 1)d + a − 1 −

(
r+1
2

)
(a + 2)(a − 1)/2 and∑a−1

x=1(d− x
(
r+1
2

)
+ 1− r) = (a− 1)d− (a− 1)(r− 1)−

(
r+1
2

)
a(a− 1)/2, we get

g ≤ 2ad− a2
(
r+1
2

)
− ra+ a− 2 + max{0, b− r + 1}. �

Remark 2.7. Note that the upper bound on the arithmetic genus g in Corollary
2.6 is quadratic in d, but with a leading coefficient, 2

r(r+1) , which is far smaller

both of the one for the upper bound, π(d, r), for degree d non-degenerate curves,
1

2r−2 ([11, Theorem 3.7]), and the one for non-linearly normal non-degenerate

curves (i.e., π(d, r + 1)), 1
2r ([11, Theorem 3.15]) and π1(d, r + 1), 1

2r+2 . Set

γ(d, r) := 2ad−a2
(
r+1
2

)
−ra+a−2+max{0, b−r+1}. Setm1 := b(d−1)/(r+1)c,

ε1 := d −m1(r + 1) − 1, µ1 = 0 if ε1 6= r and µ1 = 1 if ε1 = r. Recall that
π1(d, r + 1) =

(
m1

2

)
(r + 1) +m1(ε1 + 1) + µ1.

Claim 1: We have γ(d, r) < π(d, r + 1) for all r ≥ 4 and d ≥
(
r+1
2

)
.

Claim 2: We have γ(d, r) < π1(d, r + 1) for all r ≥ 5 and d ≥
(
r+1
2

)
.

Proofs of Claims 1 and 2: Since π1(d, r + 1) ≤ π(d, r + 1) when the former is
defined, i.e., for d ≥ 2r + 5, for r ≥ 5 it is sufficient to prove Claim 2 and then
prove Claim 1 for r = 4 (note that

(
r+1
2

)
≥ 2r + 5 if and only if r ≥ 5).

(a) Take d =
(
r+1
2

)
. Thus a = 1, b = 0 and γ(

(
r+1
2

)
, r) =

(
r+1
2

)
− r − 1 =(

r
2

)
− 1.

Now we compute π1(
(
r+1
2

)
, r+1). First assume r even. We get m1 = r/2−1

and ε1 = r. Thus µ1 = 1 and π1(
(
r+1
2

)
, r+ 1) = (r−2)(r−4)(r+ 1)/8 + (r/2−

1)(r+ 1) + 1 = (r−2)(r−4)(r+ 1)/8 +
(
r
2

)
. Thus π1(

(
r+1
2

)
, r+ 1) > γ(

(
r+1
2

)
, r)

for all even r ≥ 4. Now assume r odd. We get m1 = (r − 1)/2 = ε1 and hence
π1(
(
r+1
2

)
, r+ 1) = (r− 1)(r− 3)(r+ 1)/8 + (r2− 1)/4. Thus π1(

(
r+1
2

)
, r+ 1) >

γ(
(
r+1
2

)
, r) for all odd r ≥ 5.

(b) Now we take r ≥ 5 and any d ≥
(
r+1
2

)
, assume π1(d, r+ 1) > γ(d, r) and

prove that π1(d+1, r+1) > γ(d+1, r). By step (a) this would conclude the proof
of Claim 2. Set z := π1(d+1, r+1)−π1(d, r+1) and w := γ(d+1, r)−γ(d, r). It
is sufficient to prove that z ≥ w. We call a, b,m1, ε1, µ1 the integers associated
to d and compute the corresponding integers for d+1 (which we will write with
a prime ′, say a′, b′ and so on). If b 6=

(
r+1
2

)
− 2 we have a′ = a and b′ = b+ 1.

Thus 2a ≤ w ≤ 2a+ 1 (the first inequality holding if and only if b ≤ r − 2). If
b =

(
r+1
2

)
−2, i.e., d = (a+1)

(
r+1
2

)
−2, then a′ = a+1 and b′ = 0. In this case we

have γ((a+1)
(
r+1
2

)
−2, r) = (2a2+2a)

(
r+1
2

)
−4a−a2

(
r+1
2

)
−ar+a−2+

(
r+1
2

)
−1−

r, γ((a+1)
(
r+1
2

)
−1, r) = (2a2+4a+1)

(
r+1
2

)
−2(a+1)−(a+1)2

(
r+1
2

)
−ar−r+a−1

and hence w = 2a− r.
If ε1 < r we have m′1 = m1, ε′1 = ε1. We have µ′1 = 1 if and only if ε′ = r−1.

Thus m1 ≤ z ≤ m1+1 in this case and z = m1+1 if and only if ε1 = r−1. Now
assume ε1 = r and so µ1 = 1. We have m′1 = m1 + 1 and ε′1 = µ′1 = 0. Since(
m1+1

2

)
−
(
m1

2

)
= m1, we get z = m1 in this case. Thus to prove that z > w it is

sufficient to prove that m1 ≥ 2a+1. We have (r+1)m1 = d−1−ε1 ≥ d−r−1
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and d = a
(
r+1
2

)
+ b. For any a ≥ 1, b ≥ −1 is sufficient to assume either r ≥ 6

or r = 5, a ≥ 2 and b ≥ 1.
Now assume r = 5. Hence

(
r+1
2

)
= 15. Thus γ(15 + x, 5) = 9 + 2x for

0 ≤ x ≤ 3, γ(19 + x, 5) = 18 + 3x for 0 ≤ x ≤ 9 and γ(29 + x, 5) = 46 + 4x
for 0 ≤ x ≤ 4. To compute π1(15, 6) we use that m1 = 2 and ε1 = 1. Thus
π1(15 + x, 6) = 12 + 2x for 0 ≤ x ≤ 2, π1(18 + x, 6) = 19 + 3x for 0 ≤ x ≤ 4,
π1(24, 6) = 37, π1(25 + x, 6) = 40 + 4x for 0 ≤ x ≤ 4, and so on.

(c) Take r = 4 and so
(
r+1
2

)
= 10. Thus γ(10, 4) = 5. Call m and ε the

integers associated to the pair (10, 5) for the computation of π(10, 5). Since
m = 2 and ε = 1, we have π(10, 5) = 6. Now take an integer d ≥ 10 and
assume γ(d, 4) ≤ π(d, 4). Take a, b, w := γ(d+ 1, 4)−γ(d, 4) as in step (b). Set
z′ := π(d+1, 5)−π(d, 5). Call m, ε (resp. m′, ε′) the integers needed to compute
π(d, 5) (resp. π(d+ 1, 5)). If ε ≤ 3 we have m′ = m, ε′ = ε+ 1 and so z′ = m.
If ε = 4 we have m′ = m + 1, ε′ = 0 and so z′ = m. Recall that w ≤ 2a + 1
with w = 2a if b ≤ 3, that (a, b) 6= (1−1) and that d−1 = 4m+ ε = 15a+b−1
with −1 ≤ b ≤ 8. To get z′ ≥ w use that 10a+ 7 ≥ 4(2a+ 1) and 10a− 2 ≥ 8a
for all a ≥ 1.

3. Proof of Theorem 1.1

Proof of part (1) of Theorem 1.1. Let X ⊂ Pr be an integral and non-degene-
rate maximal rank curve which is not aCM. Set d := deg(X) and g := g(X)
and assume g > π(d, r + 1). By Castelnuovo’s theory ([11, Theorem 3.7]),
X is linearly normal and hence h1(IX(1)) = 0. Assume for the moment
h0(IX(2)) 6= 0 and hence h0(IX(t)) 6= 0 for all t ≥ 2. Since X has maxi-
mal rank, h1(IX(t)) = 0 for all t ≥ 2. Since X is integral, we have h1(IX) = 0.
Thus X is aCM, contradicting one of our assumptions. Thus h0(IX(2)) = 0.
Since h1(IX(1)) = 0, we have σ(X) > 2. Taking a general hyperplane section
and using the definition of σ(X) we get d ≥

(
r+1
2

)
. To get a contradiction and

conclude the proof of part (1) of Theorem 1.1 it is sufficient to quote Claim 1
of Remark 2.7. �

For the constructive proof of part (2) of Theorem 1.1 we recall the description
of the Hirzebruch surfaces, i.e., the P1-bundles over P1 ([12, §V.2]; to translate
the notation below to the one used in [12] set H := h+ ef).

Let Fe be the Hirzebruch surface with a section of the ruling with self-
intersection −e. The embeddings of these surfaces, plus the cones over rational
normal curves give the minimal degree surfaces ([11, Proposition 3.10]). We
have Pic(Fe) ∼= Z2 and we take as a Z-basis of Pic(Fe) a fiber f of one of its
ruling (the only one if e > 0) and a section h of the ruling with h2 = −e;
h is unique if e > 0. We have ωFe

∼= OFe
(−2h − (e + 2)f). All the smooth

surfaces Y ⊂ Pr, r ≥ 3, with minimal degree r − 1 are obtained embedding
some Fe with e ≡ r−1 mod 2 and 0 ≤ e ≤ r−2 by the complete linear system
|OFe

(h+ r−1+e
2 f)|. From now on we often identify Fe and Y , so that a curve

X ⊂ Y belongs to a certain linear system |OFe
(ah+ bf)|, (a, b) ∈ N2.
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Fix an integral and non-degenerate curve X ⊂ Y with X ∈ |OFe
(ah+ bf)|.

Since X is integral and non-degenerate, we have a > 0, b > 0, b ≥ ae and either
a ≥ 2 or a = 1 and b > (r− 1 + e)/2. We have d := deg(X) = a(r− 1 + e)/2 +
b− ea = a(r− 1− e)/2 + b. Set g := pa(X). Since ωFe

∼= OFe(−2h− (e+ 2)f),
the adjunction formula gives ωX ∼= OX((a − 2)h + (b − e − 2)f) and hence
2g−2 = −ea(a−2)+a(b−e−2)+b(a−2), i.e., g = 1+ab−b+(ea−ea2)/2−a.

Now we check for which (x, y) ∈ Z2 we have h1(OFe
(xh + yf)) = 0. Let

π : Fe → P1 denote the ruling induced by the complete linear system |OFe
(f)|.

For any integer c ≥ 0 we have π∗(OFe(ch + df)) ∼= ⊕ci=0OP1(d − ie). We have
h1(OP1(t)) = 0 if an only if t ≥ −1. Thus if x ≥ 0 we have h1(OFe

(xh+yf)) = 0
if and only if y ≥ ex− 1.

Now assume x = −1. Since hi(OP1(−1)) = 0, i = 0, 1, and π is flat, the
changing basis theorem gives π∗(OFe

(ah + bf)) = R1π∗(OFe
(ah + bf)) = 0.

Thus the Leray spectral sequence of π gives h1(OFe(−h+ yf)) = 0.
Now assume x ≤ −2. Since ωFe

∼= OFe(−2h − (e + 2)f), duality gives
h1(OFe

(xh+ yf)) = h1(OFe
((−2−x)f + (−b− e−2)h)). Since −2−x ≥ 0, we

just saw that h1(OFe
(xh+ yf)) = 0 if and only if −y − e− 2 ≥ e(−2− x)− 1,

i.e., if and only if y ≤ (x+ 1)e− 1.
Fix an integer x > 0. We have OFe(x) ∼= OFe(xh + x r1+e2 f). Since Y is

projectively normal, we have h1(IX(x)) = 0 if and only if h1(OFe(x)(−X)) = 0,
i.e., if and only if h1(OFe

((x − a)h + (x r1+e2 − b)f)) = 0. We do not need to
show all the possible solutions for arbitrary e for the following reason. In the
particular cases (i.e., e = 0, 1) we will do below we will get all integers d ≥ r+1
and for each of these cases the genus is π(d, r + 1) by Remark 3.1 below. So
the long discussion of the Hirzebruch surfaces, rational cones and the Veronese
embedding would only give (by the Castelnuovo’s theorem explained in [11, Ch.
III]) all possible smooth curves in part (2) of Theorem 1.1.

Remark 3.1. Take any smooth curve X ⊂ Pr with maximal rank, but not aCM
constructed as an isomorphic linear projection of an aCM and linearly normal
curve X ′ ⊂ Pr+1 contained in a minimal degree surface T , i.e., either a cone
of a rational normal curve of Pr+1 or the isomorphic image of an Hirzebruch
surface Fe, e ≡ r + 1 (mod 2), 0 ≤ e ≤ r − 2. Set d := deg(X). We claim that
pa(X) = π(d, r + 1), i.e., that pa(X ′) = π(d, r + 1). Indeed, since X ′ is aCM,
we have h1(IX′(x)) = 0 for all x ≥ 0. Let H ⊂ Pr+1 be a general hyperplane.
Note that H ∩ X ′ are d points of the rational normal curve T ∩ H. Use the
proof of Castelnuovo’s theorem given in [11, Ch. III].

3.1. Pr, r ≥ 6 and r even

Fix an integer t ≥ 3. In this section we consider non-degenerate curves
X ⊂ P2t, which are not linearly normal (and in particular they are not aCM),
but which have maximal rank. Set F0 := P1 × P1. The line bundle OF0

(1, t)
is very ample and it gives a linearly normal embedding φ : F0 → P2t+1 as a
minimal degree surface (and in particular as an aCM surface). Let Y ⊂ P2t
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be a general linear projection of φ(F0). Since 2t ≥ 6, Y ∼= F0 and hence for
each curve X ⊂ F0 we get an embedding of X into P2t. Fix integers a ≥ 2
and b > 0 and take any smooth Ca,b ∈ |OF0(a, b)|. Let Xa,b ⊂ Y denote the
curve obtained by the linear projection of φ(Ca,b). Since a ≥ 2, φ(Ca,b) spans
P2t+1 and hence Xa,b is non-degenerate and h1(IXa,b

(1)) > 0. We have ωF0
∼=

OF0
(−2,−2). Hence the adjunction formula gives ωCa,b

∼= OXa,b
(a− 2, b− 2).

Thus pa(Xa,b) = ab− a− b− 1. Note that deg(Xa,b) = b+ ta. For any integer
x > 0 let ηx,a,b : H0(OF0

(x, tx))→ H0(OXa,b
(x)) denote the restriction map.

Remark 3.2. Fix (u, v) ∈ Z2. By the Künneth formula we have h1(OF0
(u, v)) =

0 if and only if either u ≥ 0 and v ≥ −1 or u = −1 or u ≤ −2 and v ≥ 0.

Remark 3.3. By [1, Corollary 3.3] or [2, Theorem 2] we have h1(IY (x)) =
0 for all x ≥ 2. Thus for every integer x ≥ 2 the restriction map ρx :
H0(OP2t(x)) → H0(OY (x)) is surjective. Note that OY (x) ∼= OF0

(1, xt) and
that h0(OF0(2, 2t)) = 6t + 3. Since ρ2 is surjective, we have h0(IY (2)) =(
2t+2
2

)
− 6t − 3 > 0. Thus every curve contained in Y is contained in a

quadric hypersurface. Note that ηx,a,b is surjective (a condition equivalent
to h1(ICa,b

(x)) = 0 if x ≥ 2) if and only if h1(OF0
(x − a, tx − b)) = 0. By

the Künneth’s formula we have h1(OF0
(x− a, tx− b)) = 0 if and only if either

x ≥ a − 1 or b ≥ tx − 1. Since Xa,b is an isomorphic linear projection of
φ(Ca,b) and h1(IY (x)) = 0 for all x ≥ 2, we have h1(ICa,b

(x)) = 0 if and only

if h1(OF0(x − a, xt − b)) = 0, i.e., if and only if either x ≥ a and xt − b ≥ −1
or x− a = −1 or x− a ≤ −2 and tx− b < 0.

Take positive integers a, b. The restriction maps ηx,a,b are surjective for all
x ≥ 2 if and only if h1(OF0

(x−a, tx−b)) = 0 for all x ≥ 2. Recall that t ≥ 3 and
OF0

(1) = OF0
(1, t). First assume x ≥ a. In this case h1(OF0

(x−a, tx− b)) = 0
if and only if tx− b ≥ x− a− 1 (Remark 3.2) and this is the case if and only if
b ≤ ta+ 1. If x = a− 1, then h1(OF0(x−a, tx− b)) = 0 for any b. Now assume
x ≤ a−2. Since x ≥ 2, in this part we are assuming a ≥ 4). By Remark 3.2 we
have h1(OF0

(x− a, tx− b)) = 0 if and only if b ≥ tx. Thus ηx,a,b is surjective
for all x ≥ 2 if and only if

(3.1) 2ta− 2t ≤ b ≤ 2ta+ 1.

So for each fixed t ≥ 3 (i.e., for each fixed even r ≥ 6) and each fixed a ≥ 2 we
have 2t+1 possible degrees (ranging from 2ta−2t and 2ta+1), each of them with
a different genus (which increases from ta2−2at−ta+2t−a+1 = ta2−3at−a+1
to ta2 + a − ta − a + 1 = ta2 − ta + 1). The maximal degree 2ta + 1, for the
integer a is higher than the minimal degree, 2ta, for the integer a + 1. Thus
increasing a we get as degrees all integers which are at least the minimal degree
which occurs when a = 4, i.e., all d ≥ 6t. Then we add the non-degenerate
examples coming for the integers a = 1, 2, 3 (i.e., for a = 1 we assume b > t
and hence b = t+ 1). We get all examples with d ≥ 2t+ 1 = r + 1.
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3.2. Pr, r ≥ 5 and r odd

Fix an odd integer r ≥ 5. Thus r = 2t−1 for some integer t ≥ 3. The linear
system |OF1

(h+ tf)| induces an embedding φ : F1 → P2t. Let Y ⊂ P2t−1 = Pr
be a general linear projection of φ(F1). We have h1(IY (x)) = 0 for all x ≥ 2
by either [2, Theorem 2] or [1, Corollary 3.3]. Fix integer b ≥ a ≥ 2. Fix a
smooth curve X ∈ |OF1(ah+ bf)|. Since ωF1

∼= OF1(−2h−3f), the adjunction
formula gives ωX ∼= OX((a − 2)h + (b − 3)f) and so 2pa(X) − 2 = a(b − 3) +
(a− 2)b− a(a− 2), i.e., X has genus 1 + ab− a(a+ 3)/2. Let Xa,b ⊂ Y be the
image of X by the linear projection sending φ(F1) isomorphically onto Y . Note
that deg(Xa,b) = b + ta − a. For any x ∈ N let ηx,a,b : H0(OF1

(xh + xtf)) →
H0(OX(x)) denote the restriction map. We only consider the case b = ta.

Lemma 3.4. We have h1(OF1
(uh + vf)) = 0 if and only if either u ≥ 0 and

v ≥ u− 1 or u = −1 or u ≤ −2 and u ≥ v.

Proof. First assume u ≥ 0. Let π : F1 → P1 be the ruling of F1. We have
π∗(OF1

(uh + vf)) ∼= ⊕ui=0OF1
(v − i). Since h1(OP1(x)) = 0 if and only if

x ≥ −1, the Leray spectral sequence of π gives h1(OF1
(uh + vf)) = 0 if and

only if v ≥ u− 1.
Now assume u = −1. Since π∗(OF1(−h + vf)) = 0 and R1π∗(OF1(−h +

vf)) = 0, the Leray spectral sequence of π gives h1(OF1(−h+ vf)) = 0.
Now assume u ≤ −2. Since ωF1

∼= OF1
(−2h−3f), duality gives h1(OF1

(uh+
vf)) = h1(OF1

((−2 − u)h + (−3 − v)f)). Thus h1(OF1
(uh + vf)) = 0 if and

only if −3− v ≥ −2− u− 1, i.e., u ≥ v. �

Take integers b ≥ a > 0 and a smooth X ∈ |OF1
(ah+ bf)|. Note that X is

connected.
Fix positive integers a and b. The restriction maps ηx,a,b are surjective for

all x ≥ 2 if and only if h1(OF1
((x − a)h + (tx − b)f)) = 0 for all x ≥ 2.

Recall that t ≥ 3 and OF1
(1) = OF1

(h + tf). First assume x ≥ a. In this
case h1(OF1

((x − a)h + (tx − b)f)) = 0 if and only if tx − b ≥ x − a − 1
(Remark 3.4) and this is the case if and only if b ≤ ta + 1. If x = a − 1,
then h1(OF1((x − a)h + (tx − b)f)) = 0 for any b (Remark 3.4). Now assume
x ≤ a− 2. Since x ≥ 2 we are assuming a ≥ 4. Thus ηx,a,b is surjective for all
x ≥ 2 if and only if ta−2t ≤ b ≤ ta+1. Note that an element of |OF1

(ah+bf)|
has degree ta+ b−a. Thus for a fixed a we get all integers between 2ta−2t−a
and 2ta+ 1− a. Note that the maximum of this set of integers for the integer
a is smaller than the minimum one arising for the integer a + 1. We add the
non-degenerate maximal rank curves coming from the integers a = 1, 2, 3. The
non-degeneracy gives no restriction if a > 1, while if a = 1 we need b > t and
hence b = t + 1. Thus as in the case with even r ≥ 6 we get as degrees of
maximal rank, but not aCM, curves of all degrees d ≥ r + 1.
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3.3. Case r = 4

Call φ : P2 → P5 the order 2 Veronese embedding. Set W := φ(P2).
The Veronese surface is aCM and a general linear projection Y of it in P4

is isomorphic to it. Thus for each integer a ≥ 3 and any smooth degree a
plane curve A ⊂ P2 we get a smooth curve φ(A) with degree 2a and genus
(a − 1)(a − 2)/2 = π(2a, 5). The curve φ(A) is aCM, because W is aCM
and h1(OP2(a − t)) = 0 for all t ∈ N, i.e., for all t ∈ N the restriction map
H0(OW (t))→ H0(Oφ(A)(t)) is surjective. Let X ⊂ Y be the image of φ(A) by

the isomorphic linear projection W → Y . It is well-known that h1(IY (t)) = 0
for all t ≥ 2 (this also follows from the case (d, k) = (2, 4) of [2, Theorem 3]).
Since all restriction maps H0(OW (t))→ H0(Oφ(A)(t)), t ≥ 2, are surjective, X
has maximal rank. Since X is not linearly normal, X is not aCM. Since a ≥ 3,
X is non-degenerate. Note that we really need to exclude the case a = 2,
because the only non-degenerate degree 4 curves of P4 are the rational normal
curves, which are aCM.

Proof of part (2) of Theorem 1.1. For r even and r ≥ 6 we use the linear pro-
jection of the embeddings of F0. For all odd r ≥ 5 we use the linear projections
of the embeddings of F1. Remark 3.1 gives that if X ⊂ Pr arises in that way
we have pa(X) = π(deg(X), r + 1). �

Remark 3.5. We explain the existence for all integers d ≥ r, r ≥ 4, of smooth,
aCM and non-degenerate curves X ⊂ Pr, r ≥ 4, with pa(X) = π(d, r). If r
is odd use the images of the smooth curves X ∈ |OF0

(ah + a r−12 f)| by the

embedding of F0 induced by the complete linear system |OF0(h + r−1
2 f)|. If

r is even use the images of the smooth curves X ∈ |OF1(ah + a r2f)| by the
embedding of F1 induced by the complete linear system |OF1

(h + r
2f)|; note

that these linearly normal examples work even when r = 4, because OF1
(h+2f)

is very ample and h0(OF1
(h+ 2f)) = 5.

4. Genus g < π(d, r + 1)

Remark 4.1. Let W ⊂ Pn, n ≥ 3, be an integral and non-degenerate surface of
degree n, i.e., the next degree after the minimal one for non-degenerate surfaces.
T. Fujita studied these surfaces (and their higher dimensional generalization)
in the set-up of polarized varieties with ∆-genera 1 (more precisely, either they
have ∆-genus 1 or they are the isomorphic linear projection of a polarized
variety of ∆-genus 0). By [4, Theorem 1.2] they are either normal, aCM and
anti-canonically embedded (often called normal del Pezzo surfaces) or exterior
linear projection of minimal degree surfaces of Pn+1. In the latter case if W
is smooth we run in the case which we have handled in Section 3 and which
only gives degree d maximal rank curves of genus π(d, n+ 1); if W is singular,
still no new smooth curve may arise in this way and so the degree d maximal
rank curves contained in them have genus π(d, n + 1). We recall that the
classification of so-called normal del Pezzo surfaces is quite complicated if we
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allow non-Gorestein singularities or we allow that ωW is not ample ([5, 10]),
but for us it is sufficient to look at normal Gorenstein surfaces for which ωW
is a line bundle and ω∗W is ample (we even only need them when ω∗X is very
ample). In this case there is a complete and easy classification ([15, 16]). The
main point is that in this case the surface Y ⊂ Pn is anticanonically embedded
and it is either the cone over a linearly normal elliptic curve of Pn−1 or it is the
one described in [7] as the image of a blowing up of P2 by a system of plane
cubics (when W is not smooth it corresponds to the sequences of blowing ups
in almost general position in the terminology of [7]). In the latter cases we
have n ≤ 9 and hence they give examples in the set-up of Proposition 1.2 only
for r := n− 1 ≤ 8. We only do the cases which gives examples for r = 7, 8.

Remark 4.2. The effective Weil divisors of cones are described in [12, Ex. II.6.3
and Ex. V.2.9]. Fix a hyperplane H ⊂ Pn and o ∈ Pn \ {o}. Fix a smooth
and non-degenerate curve C ⊂ H and let W ⊂ Pn denote the cone with vertex
o and base C. Let `1 : W \ {o} → C denote the morphism induced by the
linear projection from o. Let X ⊂ W be a smooth and non-degenerate curve.
If o /∈ X, then `1 induces a morphism ` : X → C. If o ∈ X, then `1|X\{o}
induces a morphism ` : X → C, because C and X are assumed to be smooth.
Set a := deg(`). Since X is non-degenerate, we have a ≥ 2. If o /∈ X, we
have deg(X) = adeg(C), because OX(1) ∼= `∗(OC(1)). If o ∈ X, we have
deg(X) = adeg(C) + 1, because OX(1) ∼= `∗(OC(1))(o) (here we use that
o is a smooth point of X). Thus for all smooth and non-degenerate curves
X ⊂ W there is an integer a ≥ 2 such that either deg(X) = a deg(W ) or
deg(X) = adeg(W ) + 1. For this statement the smoothness of X is essential.
Now take as W ⊂ Pr+1 a cone over a linearly normal elliptic curve of Pr. We
have deg(W ) = r + 2. Thus for a fixed r the degrees d of the smooth curves
contained in such cones are very restrictive: d ≡ 0, 1 (mod r+ 2). By Remark
4.1 we get that for r ≥ 9 the only possible integers d appearing as smooth
curves with genus π1(d, r + 1) are ≡ 0, 1 (mod r + 2), contrary to the case of
Theorem 1.1.

4.1. Y rational

In this case W is the image by the anticanonical linear system of a sequence
of c := 9− r blowing-ups starting with P2 and the sequence is called in almost
general position. Since c ≥ 0, this implies r ≤ 9 and if r = 9 we just have
the order 3 Veronese embedding of P2. We do only the cases r = 7, 8, because
the lower r are messy (just to give a sample, look at [13] in which the only
problem is to find that all pairs (d, g) in certain ranges are realized (and here
the 5 points are assumed to be in general position)).

Example 4.3. Assume r = 8. In this case Y is an isomorphic linear projection
of the order 3 Veronese embedding W of P2. Let X ′ ⊂ W be the image of a
degree m integral curve of P2. We have g := pa(X) = (m − 1)(m − 2)/2 and
d := deg(X ′) = 3m. Thus g = (d − 3)(d − 6)/18. The curve X ′ is aCM and
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its isomorphic linear projection in P8 has maximal rank, but it is not aCM,
because it is not linearly normal.

Example 4.4. Assume r = 7. In this case the surface W ⊂ P7 whose
isomorphic linear projection gives the example is smooth and it is the em-
bedding of F1 by its anticanonical linear system |OF1

(2h + 3f)|. We use
the notation of section 3. Suppose that C ⊂ Y is the image of an inte-
gral curve X ∈ |OF1(ah + bf)| with a > 0, b > 0 and b ≥ a. To have
X and C non degenerate we need either b ≥ 4 or (a, b) = (3, 3). We have
d := deg(X) = 2b+ 3a− 2a = 2b+a and g := pa(X) = 1 +ab− (a2 +a)/2. We
are in the set-up of Remark 2.1. Fix an integer t > 0. Let Y ⊂ P7 be a general
linear projection from P8 of the anticanonical embedding of F1. By [2] we have
h1(IY (t)) = 0 for all t ≥ 2. By Remark 2.1 we have h1(IX(t)) = 0 if and only
if h1(OF1((2t− a)h+ (3t− b)f)) = 0. We quote the case e = 1 of Section 3. If
a = 2t+ 1 we have h1(OF1

((2t− a)h+ (3t− b)f)) = 0 for any b. If a ≤ 2t we
have h1(OF1

((2t− a)h+ (3t− b)f)) = 0 if and only if 3t− b ≥ 2t− a− 1, i.e.,
b ≤ a+ t+ 1. If a ≥ 2t+ 2 we have h1(OF1

((2t− a)h+ (3t− b)f)) = 0 if and
only if 3t− b ≤ 2t− a, i.e., b ≤ a+ t.

Proof of Proposition 1.2. Assume for the moment σ(X) > 2. Taking a gen-
eral hyperplane section and using the definition of σ(X) we get d ≥

(
r+1
2

)
.

Claim 2 of Remark 2.7 gives a contradiction. Thus σ(X) = 2. First as-
sume h1(IX(1)) = 0. Thus (2.1) gives s(X) = 2 and that the restriction
map H0(IX(2)) → H0(H, IX∩H,H(2)) is surjective, Lemma 2.2 gives that X
is aCM, a contradiction. Thus X is an isomorphic projection of X ′ ⊂ Pr+1.
Apply [11, Corollary 3.17] to X ′. �

5. Reducible curves with maximal rank

We only consider reduced curves and so our curves in this section are ir-
reducible if and only if they are integral. In the case r = 3 there is a com-
plete description of all (d, g) for with there is a reducible aCM space curve,
but no irreducible aCM space curve ([9, 17]) and this description is exploited
in [6] from the geometric point of view. No such description is known for
r > 3 (and it is not expected, since we not even know the triples (d, g, r) for
which aCM curves exists). Much less is expected for maximal rank curves.
However for r ≥ 5 we construct in this section several examples of reducible
maximal rank curves, but not aCM, with degree d and arithmetic genus g
with (d, g) not covered by any integral maximal rank curve. Take a reduced
maximal rank curve X ⊂ Pr. X is degenerate if and only if h0(IX(1)) 6= 0,
i.e., h0(IX(t)) 6= 0 for all t > 0. Since X has maximal rank by assump-
tion, it is aCM and X is just an aCM curve in some proper linear subspace
of Pr. Thus it is not restrictive to focus our attention on the case of maxi-
mal rank non-degenerate curves. We claim that for r ≥ 5 the examples given
in part (2) of Theorem 1.1 and in Examples 4.3, 4.4 or in Remark 4.2 have
h0(IX(2)) ≥ 2. Note that in all these examples we have h0(IX(1)) = 0 and
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h1(IX(1)) = 1. The long cohomology exact sequence of the exact sequence
(2.1) gives h0(IX(2)) ≥ h0(H, IX∩H,H(2)) − 1. Since X has maximal rank,
but it is not aCM, Lemma 2.2 shows that if h0(H, IX∩H,H(2)) − 1 > 0, then
h0(IX(2)) = h0(H, IX∩H,H(2))− 1. Thus for r ≥ 5 the examples given in part

(2) of Theorem 1.1 have h0(IX(2)) =
(
r+1
2

)
− 2(r − 1)− 2, while the examples

used in Proposition 1.2 have h0(IX(2)) =
(
r+1
2

)
− 2r− 1. Thus there are many

examples with large h0(IX(2)).
In this section we prove the following result.

Proposition 5.1. Let X ⊂ Pr, r ≥ 5, be a reduced and connected maximal rank
curve having an irreducible component T spanning Pr. Assume h0(IX(2)) ≥ 2
and set a := bh0(IX(2))/2c. Fix an integer b such that 1 ≤ b ≤ a. Let Y ⊂ Pr
be the union of X and b general lines L1, . . . , Lb, each of them intersecting
quasi-transversally T and at a unique point. Then deg(Y ) = deg(X) + b,
pa(Y ) = pa(X), h0(IY (2)) = h0(IX(2)) − 2b and Y has maximal rank, but it
is not aCM.

Proof. The word “quasi-transversally” means that for each Li we have Li ∩
Sing(T ) = ∅ and that at each q ∈ T ∩Li the line Li is not the tangent line to T
at q. Note that the set A(T ) of all lines L ⊂ Pr intersecting T at a unique point
and quasi-transversally is a non-empty and irreducible quasi-projective variety
of dimension r (use that dimT = 1 and that for each p ∈ Pr the set of all lines
of Pr containing p is a projective space of dimension r − 1). Thus it makes
sense to speak about the general point of A(T ), i.e., of general Li’s. With our
formulation of the proposition the case b = 1 gives the general case (if b > 1 use
induction on b and apply the case b = 1 to the same T and the maximal rank
curve X ′ := X∪L1∪· · ·∪Lb−1 which have h0(IX′(2)) = h0(IX(2))−2b+2 ≥ 2),
except the statement that Y is not aCM. Thus until step (f) we assume b = 1
and write L := L1. Fix a general L ∈ A(T ) and set W := X ∪ L. Since
L ∩ T 6= ∅ and X is connected, W is connected.

(a) In this step we check that pa(W ) = pa(X). We have |T ∩L| = 1 because
r > 2, dimA(T ) = r and T has only ∞2 secant lines. Since Sing(X) is a finite
set, there are only∞1 lines containing a smooth point of T and a singular point
of X. Thus L∩Sing(X) = ∅. Since dimA(T ) > 1, T has only∞1 tangent lines
and L∩Sing(X) = ∅, L intersects quasi-transversally T . Since |L∩T | = 1 and
L intersects quasi-transversally T . Thus it is sufficient to prove that L∩E = ∅
for each irreducible component E of X such that E 6= T (if any). Indeed, for
any q ∈ Pr and any reduced curve F ⊂ Pr with q /∈ F we have R ∩ F = ∅ for
the general line R ⊂ Pr containing q.

(b) Since W ⊃ T , we have h0(IW (t)) = 0 for all t ≤ 1. Thus to prove
that W has maximal rank it is sufficient to prove that h1(IW (t)) = 0 for all
t ≥ 2. In this step we prove that h0(OW (t)) = h0(OX(t)) + t. Consider the
Mayer-Vietoris exact sequence

(5.1) 0→ OW (t)→ OX(t)⊕OL(t)→ OX∩L(t)→ 0,
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which only requires that L is not an irreducible component of X and in which
X ∩ L is the scheme-theoretic intersection. Thus h0(OX∩L(t)) = deg(X ∩ T ).
By step (a) we have deg(X∩L) = 1. Since L is a line, deg(X∩L) = 1 and t ≥ 0,
we have h0(OL(t)) = t+ 1 and the restriction map H0(OL(t))→ H0(OX∩L(t)
is surjective. Thus (5.1) gives h0(OW (t)) = h0(OX(t)) + t.

(c) Now we check that h0(IW (2)) = h0(IX(2)) − 2. Since h0(OW (2)) =
h0(OX(2)) + 2 by step (a), we have h0(IW (2)) ≥ h0(IX(2)) − 2 and so we
only need to prove that h0(IW (2)) ≤ h0(IX(2)) − 2. Fix q ∈ Treg and call
Rq a general line containing q. It is sufficient to prove that h0(IX∪Rq (2)) ≤
h0(IX(2)) − 2 for a general q. Since Rq contains a general point p ∈ Pr and
h0(IX(2)) > 0, we have h0(IX∪Rq

(2)) ≤ h0(IX∪{p}(2)) = h0(IX(2)) − 1 for
any q. Thus it is sufficient to prove that a general element of |IX∪{p}(2)| does

not contain Rq if q is general in T . Since h0(IX(2)) ≥ 2 and p is general in
Pr, this is the case if and only if a general Q ∈ |IX(2)| is a cone with vertex
containing q. This is not the case for a general q ∈ T , because T spans Pr and
the singular locus of a quadric hypersurface of Pr is a proper linear subspace
of Pr.

(d) Now we check that for each integer t ≥ 2 we have h0(IW (t)) = h0(IX(t))
−t. Set {q} := X ∩ L. Since h0(OW (t)) = h0(OX(t)) + t by step (a), we have
h0(IW (t)) ≥ h0(IX(t)) − t and so we only need to prove that h0(IW (t)) ≤
h0(IX(t))−t. In step (c) we proved the case t = 2. Thus we may assume t > 2.
Since the restriction map H0(OPr (t))→ H0(OX(t)) is surjective and L ∩X =
{q} as schemes, it is sufficient to prove the surjectivity of the restriction map λt :
H0(Pr, IX(t))→ H0(L, I{q},L(t)). We use induction on t. Fix a general S ⊂ L
such that |S| = t and write S = {o1, . . . , ot} and set Si := {o1, . . . , oi}. Since
h0(L, I{q},L(t)) = t, it is sufficient to prove that h0(IX∪Si

(t)) ≤ h0(IX(t))− i
for i = 1, . . . , t. Step (c) gives the existence of Q ∈ |IX(2)| such that X ∩ L =
{q, o1}. The union of Q and t− 2 general hyperplanes gives h0(IX∪{o1}(t)) =

h0(IX(t)) − 1. Let Hi be a general hyperplane of Pr containing {oi}. Let Mi

be a general hyperplane (so S ∩Mi = ∅ for all i). The degree t hypersurface

Q ∪ (
⋃i
h=1Hi) ∪ (

⋃t
h=i+1Mh) gives h0(IX∪Si

(t)) < h0(IX∪Si−1
(t)).

(e) Steps (a) and (d) prove that W has maximal rank.
(f) Now for any b ≥ 1 we prove that X ∪ L1 ∪ · · · ∪ Lb is not aCM. As

in step (a) we get h0(OX∪L1∪···∪Lb
(1)) = h0(OX(1)) + b ≥ r + 1 + b and so

X ∪ L1 ∪ · · · ∪ Lb is not linearly normal. �

Remark 5.2. Take r ≥ 5 and a pair (d, g) such that d ≥ r+1 and g = π(d, r+1).
By part (2) of Theorem 1.2 there is a smooth, integral and non-degenerate curve
X ⊂ Pr with deg(X) = d, pa(X) = g and maximal rank, but it is not aCM.
We saw before Proposition 5.1 that h0(IX(2)) ≥ 2 and hence the case b = 1 of
Proposition 5.1 shows that (d + 1, g) is realized by some reducible curve with
maximal rank, but not aCM. We need to find (d, g, r) for which (d+ 1, g, r) is
not realized by any X. Obviously π1(d + 1, r + 1) > π1(d, r + 1). For d � 0
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we have π1(d+ 1, r+ 1) ∼ d2/(2r+ 2) and hence π1(d+ 1, r+ 1) < π(d, r+ 1).
Apply part (1) of Proposition 1.2.
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