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STRONG CONVERGENCE OF COMPOSITE ITERATIVE
METHODS FOR NONEXPANSIVE MAPPINGS

Jong Soo Jung

Abstract. Let E be a reflexive Banach space with a weakly sequentially
continuous duality mapping, C be a nonempty closed convex subset of
E, f : C → C a contractive mapping (or a weakly contractive mapping),
and T : C → C a nonexpansive mapping with the fixed point set F (T ) 6=
∅. Let {xn} be generated by a new composite iterative scheme: yn =
λnf(xn)+(1−λn)Txn, xn+1 = (1−βn)yn+βnTyn, (n ≥ 0). It is proved
that {xn} converges strongly to a point in F (T ), which is a solution of
certain variational inequality provided the sequence {λn} ⊂ (0, 1) satisfies
limn→∞ λn = 0 and

P∞
n=0 λn = ∞, {βn} ⊂ [0, a) for some 0 < a < 1

and the sequence {xn} is asymptotically regular.

1. Introduction

Let E be a real Banach space and C be a nonempty closed convex subset
of E. Recall that a mapping f : C → C is a contraction on C if there exists
a constant k ∈ (0, 1) such that ‖f(x) − f(y)‖ ≤ k‖x − y‖, x, y ∈ C. We
use ΣC to denote the collection of all contractions on C. That is, ΣC =
{f : C → C | f is a contraction with constant k}. Let T : C → C be a
nonexpansive mapping (recall that a mapping T : C → C is nonexpansive if
‖Tx− Ty‖ ≤ ‖x− y‖, x, y ∈ C) and F (T ) denote the set of fixed points of T ;
that is, F (T ) = {x ∈ C : x = Tx}.

We consider the iterative scheme: for a nonexpansive mapping T , f ∈ ΣC

and λn ∈ (0, 1),

(1.1) xn+1 = λnf(xn) + (1− λn)Txn, n ≥ 0.

As a special case of (1.1), the following iterative scheme

(1.2) zn+1 = λnu+ (1− λn)Tzn, n ≥ 0,
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where u, z0 ∈ C are arbitrary (but fixed), has been investigated by many
authors: see, for example, Cho et al. [3], Halpern [6], Jung [7], Lions [12],
Reich [17, 18], Shioji and Takahashi [19], Wittmann [20] and Xu [21]. The
authors above showed that the sequence {zn} generated by (1.2) converges
strongly to a point in the fixed point set F (T ) under appropriate conditions on
{λn} in either Hilbert spaces or certain Banach spaces.

The viscosity approximation method of selecting a particular fixed point of
a given nonexpansive mapping was proposed by Moudafi [14]. In 2004, Xu
[22] extended Theorem 2.2 of Moudafi [14] for the iterative scheme (1.1) to a
Banach space setting using the followings conditions on {λn}:

(H1) limn→∞ λn = 0;
∑∞

n=0 λn = ∞ or equivalently,
∏∞

n=0(1− λn) = 0;
(H2)

∑∞
n=0 |λn+1 − λn| <∞ or limn→∞ λn

λn+1
= 1.

Recently, Kim and Xu [11] provided a simpler modification of Mann iterative
scheme (1.3) in a uniformly smooth Banach space as follows:

(1.3)





x0 = x ∈ C,
yn = βnxn + (1− βn)Txn,

xn+1 = αnu+ (1− αn)yn,

where u ∈ C is an arbitrary (but fixed) element, and {αn} and {βn} are two
sequences in (0,1). They proved that {xn} generated by (1.3) converges to a
fixed point of T under the control conditions:

(i) limn→∞ αn = 0, limn→∞ βn = 0;
(ii)

∑∞
n=0 αn = ∞,

∑∞
n=0 βn = ∞;

(iii)
∑∞

n=0 |αn+1 − αn| <∞,
∑∞

n=0 |βn+1 − βn| <∞.

In this paper, motivated by above-mentioned results, as the viscosity ap-
proximation method, we consider a new composite iterative scheme for a non-
expansive mapping T :

(IS)





x0 = x ∈ C,
yn = λnf(xn) + (1− λn)Txn,

xn+1 = (1− βn)yn + βnTyn,

where {λn}, {βn} ⊂ (0, 1). First, we prove the strong convergence of the se-
quence {xn} generated by (IS) under the suitable conditions on the control
parameters {λn} and {βn} and the asymptotic regularity on {xn} in a re-
flexive Banach space with a weakly sequentially continuous duality mapping.
Moreover, we show that the strong limit is a solution of certain variational in-
equality. Next we study the viscosity approximation with the weakly contrac-
tive mapping to a fixed point of a nonexpansive mapping in the same Banach
space. The main results improve and complement the corresponding results of
[3, 6, 12, 14, 17, 18, 19, 20, 21, 22]. In particular, if βn = 0 for all n ≥ 0, then
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(IS) reduces to (1.1). We point out that the iterative scheme (IS) is a new
method for finding a fixed point of T .

2. Preliminaries and lemmas

Let E be a real Banach space with norm ‖ · ‖ and let E∗ be its dual. The
value of f ∈ E∗ at x ∈ E will be denoted by 〈x, f〉. When {xn} is a sequence in
E, then xn → x (resp., xn ⇀ x) will denote strong (resp., weak) convergence
of the sequence {xn} to x.

The norm of E is said to be Gâteaux differentiable (and E is said to be
smooth) if

lim
t→0

‖x+ ty‖ − ‖x‖
t

exists for each x, y in its unit sphere U = {x ∈ E : ‖x‖ = 1}.
By a gauge function we mean a continuous strictly increasing function ϕ

defined on R+ := [0,∞) such that ϕ(0) = 0 and limr→∞ ϕ(r) = ∞. The
mapping Jϕ : E → 2E∗ defined by

Jϕ(x) = {f ∈ E∗ : 〈x, f〉 = ‖x‖‖f‖, ‖f‖ = ϕ(‖x‖)} for all x ∈ E
is called the duality mapping with gauge function ϕ. In particular, the duality
mapping with gauge function ϕ(t) = t denoted by J , is referred to as the
normalized duality mapping. It is known (cf. [4]) that a Banach space E is
smooth if and only if the normalized duality mapping J is single-valued.

We say that a Banach space E has a weakly sequential continuous duality
mapping if there exists a gauge function ϕ such that the duality mapping Jϕ

is single-valued and continuous from the weak topology to the weak∗ topology,
that is, for any {xn} ∈ E with xn ⇀ x, Jϕ(xn) ∗

⇀ Jϕ(x). For example, every
lp space (1 < p < ∞) has a weakly sequentially continuous duality mapping
with gauge function ϕ(t) = tp−1.

Let D be a subset of C. Then a mapping Q : C → D is said to be a
retraction from C onto D if Qx = x for all x ∈ D. A retraction Q : C → D
is said to be sunny if Q(Qx + t(x − Qx)) = Qx for all x ∈ C and t ≥ 0 with
Qx+t(x−Qx) ∈ C. A subset D of C is said to be a sunny nonexpansive retract
of C if there exists a sunny nonexpansive retraction of C onto D. In a smooth
Banach space E, it is well-known [5, p. 48] that Q is a sunny nonexpansive
retraction from C onto D if and only if the following condition holds:

(2.1) 〈x−Qx, J(z −Qx)〉 ≤ 0, x ∈ C, z ∈ D.
We need the following lemmas for the proof of our main results. (Lemma 2.1

was also given in Jung and Morales [9] and Lemma 2.2 is essentially Lemma 2
of Liu [13] (also see [21])).

Lemma 2.1. Let E be a real Banach space and J be the duality mapping.
Then, for any given x, y ∈ E, one has

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, j(x+ y)〉
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for all j(x+ y) ∈ J(x+ y).

Lemma 2.2. Let {sn} be a sequence of non-negative real numbers satisfying

sn+1 ≤ (1− αn)sn + αnγn + δn, n ≥ 0,

where {αn}, {γn} and {δn} satisfy the following conditions:
(i) {αn} ⊂ [0, 1] and

∑∞
n=0 αn = ∞,

(ii) lim supn→∞ γn ≤ 0 or
∑∞

n=1 αnγn <∞,
(iii) δn ≥ 0 (n ≥ 0),

∑∞
n=0 δn <∞.

Then limn→∞ sn = 0.

Let µ be a continuous linear functional on l∞ and (a0, a1, . . .) ∈ l∞. We write
un(an) instead of µ((a0, a1, . . .)). µ is said to be Banach limit if µ satisfies
‖µ‖ = µ(1) = 1 and un(an+1) = µn(an) for all (a0, a1, . . .) ∈ l∞. If µ is a
Banach limit, the following are well-known:

(i) for all n ≥ 1, an ≤ cn implies µ(an) ≤ µ(cn),
(ii) µ(an+1) = µ(an),
(iii) lim infn→∞ an ≤ µn(an) ≤ lim supn→∞ an for all (a0, a1, . . .) ∈ l∞.
The following lemma was given in [19].

Lemma 2.3. Let a ∈ R be a real number and let a sequence {an} ∈ l∞ satisfy
µn(an) ≤ a for all Banach limit µ. If lim supn→∞(an+1 − an) ≤ 0, then
lim supn→∞ an ≤ a.

Recall a mapping A : C → C is said to be weakly contractive if

‖Ax−Ay‖ ≤ ‖x− y‖ − ψ(‖x− y‖) for all x, y ∈ K,
where ψ : [0,+∞) → [0,+∞) is a continuous and strictly increasing function
such that ψ is positive on (0,∞) and ψ(0) = 0. Obviously, the class of the
weakly contractive mappings contains the class of the contractive mappings as
a special case (ψ(t) = (1 − k)t). Rhodes [16] obtained the following result for
weakly contractive mapping.

Lemma 2.4 ([16, Theorem 2]). Let (X, d) be a complete metric space, and A
a weakly contractive mapping on X. Then A has a unique fixed point p in X.
Moreover, for x ∈ X, {Anx} converges strongly to p.

The following lemma was given in [1, 2].

Lemma 2.5. Let {sn} and {γn} be two sequences of nonnegative real numbers
and {λn} a sequence of positive numbers satisfying the conditions

(i)
∑∞

n=0 λn = ∞ or, equivalently,
∏∞

n=0(1− λn) = 0,
(ii) limn→∞

γn

λn
= 0.

Let the recursive inequality

sn+1 ≤ sn − λnψ(sn) + γn, n = 0, 1, 2, . . . ,

be given where ψ(t) is a continuous and strict increasing function on [0,+∞)
with ψ(0) = 0. Then limn→∞ sn = 0.
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Finally, the sequence {xn} in E is said to be asymptotically regular if

lim
n→∞

‖xn+1 − xn‖ = 0, that is, xn+1 − xn → 0.

3. Main results

First, using the asymptotic regularity, we study a strong convergence theo-
rem for a composite iterative method for the nonexpansive mapping with the
contractive mapping.

For abbreviation, we set the duality mapping J := Jϕ. In all our proofs we
assume, without loss of generality, that J is normalized.

Let T : C → C be a nonexpansive mapping. Then, for any t ∈ (0, 1) and
f ∈ ΣC , tf + (1 − t)T : C → C defines a contraction. Thus, by the Banach
contraction principle, there exists a unique fixed point xf

t satisfying

(R) xf
t = tf(xf

t ) + (1− t)Txf
t .

For simplicity we will write xt for xf
t provided no confusion occurs.

The following result was given by Jung [8] (see also O’Hara et al. [15] and
Xu [23] for the case that f(x) = u a constant). We refer Jung and Sahu [10]
for the case of non-LIpschizian mappings.

Theorem J ([8]). Let E be a reflexive Banach space with a weakly sequentially
continuous duality mapping J . Let C be a nonempty closed convex subset of E
and T nonexpansive mappings from C into itself with F (T ) 6= ∅. Then {xt}
defined by (R) converges strongly to a point in F (T ). If we define Q : ΣC →
F (T ) by

Q(f) := lim
t→0+

xt, f ∈ ΣC ,

then Q(f) solves a variational inequality

(3.1) 〈(I − f)(Q(f)), J(Q(f)− p)〉 ≤ 0, f ∈ ΣC , p ∈ F (T ).

Remark 3.1. In Theorem J, if f(x) = u ∈ C is a constant, then (3.1) become

〈Qu− u, J(Qu− p)〉 ≤ 0, u ∈ C, p ∈ F (T ).

Hence by (2.1), Q reduces to the sunny nonexpansive retraction from C to
F (T ). Namely F (T ) is a sunny nonexpansive retraction of C.

Using Theorem J, we have the following result.

Proposition 3.1. Let E be a reflexive Banach space having a weakly sequen-
tially continuous duality mapping J . Let C be a nonempty closed convex subset
of E and T nonexpansive mappings from C into itself with F (T ) 6= ∅. Let
f ∈ ΣC and and µ a Banach limit. Let {yn} be a bounded sequence in C. If
limn→∞ ‖yn − Tyn‖ = 0, then

µn〈(I − f)(Q(f)), J(Q(f)− yn)〉 ≤ 0,

where Q : ΣC → F is defined by Q(f) = limt→0+ xt and xt is defined by (R).
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Proof. Note that the definition of the weak continuity of duality mapping J
implies that E is smooth. By Theorem J, there exists limt→0+ xt = Q(f),
where xt is defined by (R).

First, we show that ‖xt − z‖ ≤ 1
1−k‖f(z) − z‖ for t ∈ (0, 1) and z ∈ F (T )

and so {xt}, {Txt} and {f(xt)} are bounded. To this end, let z ∈ F (T ) and
t ∈ (0, 1). Then

xt − z = t(f(xt)− z) + (1− t)(Txt − Tz)

and so
‖xt − z‖ ≤ t‖f(xt)− z‖+ (1− t)‖Txt − Tz‖

≤ t‖f(xt)− z‖+ (1− t)‖xt − z‖.
This gives that

‖xt − z‖ ≤ ‖f(xt)− z‖ ≤ ‖f(xt)− f(z)‖+ ‖f(z)− z‖
≤ k‖xt − z‖+ ‖f(z)− z‖,

and so

(3.2) ‖xt − z‖ ≤ 1
1− k

‖f(z)− z‖.

Hence {xt} is bounded, so are {f(xt)} and {Txt}.
Now we can write

xt − yn = (1− t)(Txt − yn) + t(f(xt)− yn).

Applying Lemma 2.1, we have

(3.3) ‖xt − yn‖2 ≤ (1− t)2‖Txt − yn‖2 + 2t〈f(xt)− yn, J(xt − yn)〉.
Using limn→∞ ‖yn − Tyn‖ = 0, we derive

‖Txt − yn‖ ≤ ‖xt − yn‖+ en,

where en = ‖yn − Tyn‖ → 0 as n→∞, and

〈f(xt)− yn, J(xt − yn)〉 = 〈f(xt)− xt, J(xt − yn)〉+ ‖xt − yn‖2.
Thus it follows from (3.3) that

(3.4)
‖xt − yn‖2 ≤ (1− t)2(‖xt − yn‖+ en)2

+ 2t(〈f(xt)− xt, J(xt − yn)〉+ ‖xt − yn‖2).
Applying the Banach limit µ to (3.4), we have

(3.5)
µn(‖xt − yn‖2) ≤ (1− t)2µn((‖xt − yn‖+ en)2)

+ 2tµn(〈f(xt)− xt, J(xt − yn)〉+ ‖xt − yn‖2)
and it follows from (3.5) that

(3.6) µn(〈xt − f(xt), J(xt − yn)〉) ≤ tµn(‖xt − yn‖2).
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From (3.2) and boundedness of {yn}, it follows that

t‖xt − yn‖2 ≤ t

(
1

1− k
‖f(z)− z‖+ ‖z − yn‖

)2

→ 0 (as t→ 0).

Thus we conclude from Theorem J and (3.6) that

µn(〈(I − f)(Q(f)), J(Q(f)− yn)〉) ≤ lim sup
t→0

µn(〈xt − f(xt), J(xt − yn)〉)
≤ 0. �

Using Proposition 3.1 and the asymptotic regularity on the sequence {xn},
we obtain the first main result.

Theorem 3.1. Let E be a reflexive Banach space with a weakly sequentially
continuous duality mapping J . Let C be a nonempty closed convex subset of E
and T nonexpansive mappings from C into itself with F (T ) 6= ∅. Let {λn} and
{βn} be sequences in (0, 1) which satisfies the conditions:

(C1) limn→∞ λn = 0;
∑∞

n=0 λn = ∞;
(C2) βn ∈ [0, a) for some 0 < a < 1 for all n ≥ 0.

Let f ∈ ΣC and x0 ∈ C chosen arbitrarily. Let {xn} be the sequence generated
by

(IS)





x0 = x ∈ C,
yn = λnf(xn) + (1− λn)Txn,

xn+1 = (1− βn)yn + βnTyn, n ≥ 0.

If {xn} is asymptotically regular, then {xn} converges strongly to Q(f) ∈ F (T ),
where Q(f) is the unique solution of the variational inequality

〈(I − f)(Q(f)), J(Q(f)− p)〉 ≤ 0, f ∈ ΣC , p ∈ F (T ).

Proof. We notice that by Theorem J, there exists a solution Q(f) of a varia-
tional inequality

〈(I − f)(Q(f)), J(Q(f)− p)〉 ≤ 0, f ∈ ΣC , p ∈ F (T ).

Namely, Q(f) = limt→0+ xt, where xt is defined by (R). We will show that
xn → Q(f).

We proceed with the following steps:
Step 1. ‖xn − z‖ ≤ max{‖x0 − z‖, 1

1−k‖f(z) − z‖} for all n ≥ 0 and all
z ∈ F (z) and so {xn}, {yn}, {f(xn)}, {Txn} and {Tyn} are bounded.

Indeed, let z ∈ F (T ). Then we have

‖yn − z‖ = ‖λn(f(xn)− z) + (1− λn)(Txn − z)‖
≤ λn‖f(xn)− z‖+ (1− λn)‖xn − z‖
≤ λn(‖f(xn)− f(z)‖+ ‖f(z)− z‖) + (1− λn)‖xn − z‖
≤ λnk‖xn − z‖+ λn‖f(z)− z‖+ (1− λn)‖xn − z‖
= (1− (1− k)λn))‖xn − z‖+ λn‖f(z)− z‖
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≤ max
{
‖xn − z‖, 1

1− k
‖f(z)− z‖

}

and
‖xn+1 − z‖ = ‖(1− βn)(yn − z) + βn(Tyn − z)‖

≤ (1− βn)‖yn − z‖+ βn‖yn − z‖

= ‖yn − z‖ ≤ max
{
‖xn − z‖, 1

1− k
‖f(z)− z‖

}
.

Using an induction, we obtain

‖xn − z‖ ≤ max
{
‖x0 − z‖, 1

1− k
‖f(z)− z‖

}

for all n ≥ 0. Hence {xn} is bounded, and so are {yn}, {Txn}, {Tyn} and
{f(xn)}. Moreover, it follows from condition (C1) that

(3.7) ‖yn − Txn‖ = λn‖f(xn)− Txn‖ → 0 (as n→∞).

Step 2. limn →∞ ‖xn+1 − yn‖ = 0 and limn→∞ ‖xn − yn‖ = 0. Indeed, by
the condition (C2)

‖xn+1 − yn‖ = βn‖Tyn − yn‖
≤ βn(‖Tyn − Txn|+ ‖Txn − yn‖)
≤ a(‖yn − xn‖+ ‖Txn − yn‖)
≤ a(‖yn − xn+1‖+ ‖xn+1 − xn‖+ ‖Txn − yn‖)

which implies that

‖xn+1 − yn‖ ≤ a

1− a
(‖xn+1 − xn‖+ ‖Txn − yn‖).

So, by asymptotic regularity of {xn} and (3.7), we have ‖xn+1 − yn‖ → 0, and
also

(3.8) ‖xn − yn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − yn‖ → 0 (as n→∞).

Step 3. limn→∞ ‖yn−Tyn‖ = 0 and limn→∞ ‖yn+1− yn‖ = 0. By (3.7) and
Step 2, we have

‖yn − Tyn‖ ≤ ‖yn − Txn‖+ ‖Txn − Tyn‖
≤ ‖yn − Txn‖+ ‖xn − yn‖ → 0 (as n→∞).

Also asymptotic regularity of {xn} and (3.8) implies that

‖yn+1 − yn‖
≤ ‖yn+1 − xn+1‖+ ‖xn+1 − xn‖+ ‖xn − yn‖ → 0 (as n→∞).

Step 4. lim supn→∞〈(I − f)(Q(f)), J(Q(f)− yn)〉 ≤ 0. To prove this, put

an := 〈(I − f)(Q(f)), J(Q(f)− yn)〉, n ≥ 0.
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Then, by yn − Tyn → 0 in Step 3, Proposition 3.1 implies that µn(an) ≤ 0 for
any Banach limit µ. Since {yn} is bounded, there exists a subsequence {ynj

}
of {yn} such that

lim sup
n→∞

(an+1 − an) = lim
j→∞

(anj+1 − anj )

and ynj ⇀ p for some p ∈ E. From yn+1 − yn → 0 in Step 3, it follows that
ynj+1 ⇀ p. From the weak sequentially continuity of duality mapping J , we
have

w − lim
j→∞

J(Q(f)− ynj+1) = w − lim
j→∞

(J(Q(f)− ynj
) = J(Q(f)− p),

and so

lim sup
n→∞

(an+1 − an)

= lim
j→∞

〈(I − f)(Q(f)), J(Q(f)− ynj+1)− J(Q(f)− ynj
)〉 = 0.

Then Lemma 2.3 implies that lim supn→∞ an ≤ 0, that is

lim sup
n→∞

〈(I − f)(Q(f)), J(Q(f)− yn)〉 ≤ 0.

Step 5. limn→∞ ‖xn −Q(f)‖ = 0. By using (IS), we have

‖xn+1 −Q(f)‖ ≤ ‖yn −Q(f)‖
= ‖λn(f(xn)−Q(f)) + (1− λn)(Txn −Q(f))‖.

Applying Lemma 2.1, we obtain

‖xn+1 −Q(f)‖2 ≤ ‖yn −Q(f)‖2
≤ (1− λn)2‖Txn −Q(f)‖2 + 2λn〈f(xn)−Q(f), J(yn −Q(f))〉
≤ (1− λn)2‖xn −Q(f)‖2 + 2λn〈f(xn)− f(Q(f)), J(yn −Q(f))〉

+ 2λn〈f(Q(f))−Q(f), J(yn −Q(f))〉
≤ (1− λn)2‖xn −Q(f)‖2 + 2kλn‖xn −Q(f)‖‖yn −Q(f)‖

+ 2λn〈f(Q(f))−Q(f), J(yn −Q(f))〉
≤ (1− λn)2‖xn −Q(f)‖2 + 2kλn‖xn −Q(f)‖2

+ 2kλn‖xn −Q(f)‖‖yn − xn‖
+ 2λn〈f(Q(f))−Q(f), J(yn −Q(f))〉.

It then follows that
(3.9)
‖xn+1 −Q(f)‖2 ≤ (1− 2(1− k)λn + λ2

n)‖xn −Q(f)‖2
+ 2kλn‖xn −Q(f)‖‖yn − xn‖
+ 2λn〈f(Q(f))−Q(f), J(yn −Q(f))〉

≤ (1− 2(1− k)λn)‖xn−Q(f)‖2 + λ2
nM

2+2λnkM‖yn − xn‖
+ 2λn〈(I − f)(Q(f)), J(Q(f)− yn)〉,
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where M = supn≥0 ‖xn −Q(f)‖. Put

αn = 2(1− k)λn,

γn =
λn

2(1− k)
M2 +

kM

1− k
‖yn − xn‖+

1
1− k

〈(I − f)(Q(f)), J(Q(f)− yn)〉.

From the condition (C1), Step 2 and Step 4, it follows that αn → 0,
∑∞

n=0 αn =
∞, and lim supn→∞ γn ≤ 0. Since (3.9) reduces to

‖xn+1 −Q(f)‖2 ≤ (1− αn)‖xn −Q(f)‖2 + αnγn,

from Lemma 2.1 with δn = 0, we conclude that limn→∞ ‖xn−Q(f)‖ = 0. This
completes the proof. �

Remark 3.2. If {λn} and {βn} in Theorem 3.1 satisfy conditions
(C1) limn→∞ λn = 0;

∑∞
n=0 λn = ∞;

(C2) βn ∈ [0, a) for some 0 < a < 1 for all n ≥ 0;
(C3)

∑∞
n=0 |λn+1 − λn| <∞;

∑∞
n=0 |βn+1 − βn| <∞; or

(C4) limn→∞ λn

λn+1
= 1;

∑∞
n=0 |βn+1 − βn| <∞; or

(C5) |λn+1 − λn| ≤ o(λn+1) + σn,
∑∞

n=0 σn < ∞ (the perturbed control
condition);

∑∞
n=0 |βn+1 − βn| <∞,

then the sequence {xn} generated by (IS) is asymptotically regular. Now we
only give the proof in case when {λn} and {βn} satisfy the conditions (C1),
(C2) and (C5). Indeed, From (IS), we have for every n ≥ 1,

{
yn = λnf(xn) + (1− λn)Txn

yn−1 = λn−1f(xn−1) + (1− λn−1)Txn−1,

and so, for every n ≥ 1, we have

(3.10)

‖yn − yn−1‖
= ‖(1− λn)(Txn − Txn−1) + λn(f(xn)− f(xn−1)

+ (λn − λn−1)(f(xn−1)− Txn−1)‖
≤ (1− λn)‖xn − xn−1‖+ L|λn − λn−1|+ kλn‖xn − xn−1‖
= (1− (1− k)λn)‖xn − xn−1‖+ L|λn − λn−1|,

where L = sup{‖f(xn)− Txn‖ : n ≥ 0}.
On the other hand, by (IS), we also have for every n ≥ 1,

{
xn+1 = (1− βn)yn + βnTyn

xn = (1− βn−1)yn−1 + βn−1Tyn−1.

Simple calculations show that

xn+1 − xn = (1− βn)(yn − yn−1) + βn(Tyn − Tyn−1)

+ (βn − βn−1)(Tyn−1 − yn−1).
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Then it follows that

(3.11)
‖xn+1 − xn‖ ≤ (1− βn)‖yn − yn−1‖+ βn‖yn − yn−1‖

+ |βn − βn−1|‖Tyn−1 − yn−1‖.
Substituting (3.10) into (3.11) and using the condition (C5), we derive

(3.12)

‖xn+1 − xn‖ ≤ (1− (1− k)λn)‖xn − xn−1‖
+ L|λn − λn−1|+M |βn − βn−1|

≤ (1− (1− k)λn)‖xn − xn−1‖
+ L(o(λn) + σn−1) +M |βn − βn−1|,

where M = sup{‖Tyn − yn‖ : n ≥ 0}. By taking sn+1 = ‖xn+1 − xn‖,
αn = (1 − k)λn, αnγn = L o(λn) and δn = Lσn−1 + M |βn − βn−1| in (3.12),
we have

sn+1 ≤ (1− αn)sn + αnγn + δn.

Hence, by the conditions (C1), (C5) and Lemma 2.2, limn→∞ ‖xn+1−xn‖ = 0.
Moreover, from (3.10) and the condition (C5), it follows that limn→∞ ‖yn −
yn−1‖ = 0.

From this fact, we have the following:

Corollary 3.1. Let E, C and T be the same as in Theorem 3.1. Let {λn} and
{βn} be sequences in (0, 1) which satisfies the conditions (C1), (C2) and (C5)
(or the conditions (C1), (C2) and (C3), or the conditions (C1), (C2) and (C4)),
f ∈ ΣC and x0 ∈ C chosen arbitrarily. Let {xn} be the sequence generated by





x0 = x ∈ C,
yn = λnf(xn) + (1− λn)Txn,

xn+1 = (1− βn)yn + βnTyn, n ≥ 0.

Then {xn} converges strongly to Q(f) ∈ F (T ), where Q(f) is the unique solu-
tion of the variational inequality

〈(I − f)(Q(f)), J(Q(f)− p)〉 ≤ 0, f ∈ ΣC , p ∈ F (T ).

Remark 3.3. (1) Theorem 3.1 and Corollary 3.1 improve and complement the
corresponding results in Moudafi [14] and Xu [22].

(2) Even βn = 0 in (IS), Corollary 3.1 generalizes the corresponding results in
Halpern [6], Lions [12], Reich [17, 18], Shioji and Takahashi [19], Wittmann [20]
and Xu [21] to the viscosity methods along with the perturb control condition
(C5).

Next, we consider the viscosity approximation method with a weakly con-
tractive mapping for the nonexpansive mapping.

Theorem 3.2. Let E be a reflexive Banach space with a weakly sequentially
continuous duality mapping J . Let C be a nonempty closed convex subset of
E and T nonexpansive mappings from C into itself with F (T ) 6= ∅. Let {λn}
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and {βn} be sequences in (0, 1) which satisfies the conditions (C1), (C2) and
(C5) (or the conditions (C1), (C2) and (C3), or the conditions (C1), (C2) and
(C4)). Let A : C → C be a weakly contractive mapping and x0 ∈ C chosen
arbitrarily. Let {xn} be the sequence generated by





x0 = x ∈ C
yn = λnAxn + (1− λn)Txn

xn+1 = (1− βn)yn + βnTyn, n ≥ 0.

Then {xn} converges strongly to Q(Ax∗) = x∗ ∈ F (T ), where Q is a sunny
nonexpansive retraction from C onto F (T ).

Proof. It follows from Remark 3.1 that F (T ) is the sunny nonexpansive retract
of C. Denote by Q the sunny nonexpansive retraction of C onto F . Then Q◦A
is a weakly contractive mapping of C into itself. Indeed,

‖Q(Ax)−Q(Ay)‖ ≤ ‖Ax−Ay‖ ≤ ‖x− y‖ − ψ(‖x− y‖) for all x, y ∈ C.
Lemma 2.4 assures that there exists a unique element x∗ ∈ C such that x∗ =
Q(Ax∗). Such a x∗ ∈ C is an element of F (T ).

Now we define a iterative scheme as follows:

(3.13)

{
zn = λnAx

∗ + (1− λn)Twn

wn+1 = (1− βn)zn + βnTzn, n ≥ 0.

Let {wn} be the sequence generated by (3.13). Then Corollary 3.1 with f =
Ax∗ a constant assures that {wn} converges strongly to Q(Ax∗) = x∗ as n →
∞. For any n, we have

‖xn+1 − wn+1‖
≤ (1− βn)‖yn − zn‖+ βn‖Tyn − Tzn‖
≤ ‖yn − zn‖
≤ λn‖Axn −Ax∗‖+ (1− λn)‖Txn − Twn‖
≤ λn(‖Axn −Awn‖+ ‖Awn −Ax∗‖) + (1− λn)‖xn − wn‖
≤ ‖xn − yn‖ − λnψ(‖xn − wn‖) + λn(‖wn − x∗‖ − ψ(‖wn − x∗‖))
≤ ‖xn − wn‖ − λnψ(‖xn − wn‖) + λn‖wn − x∗‖.

Thus, we obtain for sn = ‖xn − wn‖ the following recursive inequality:

sn+1 ≤ sn − λnψ(sn) + λn‖wn − x∗‖.
Since ‖wn − x∗‖ → 0, it follows from Lemma 2.5 that limn→∞ ‖xn − wn‖ = 0.
Hence

lim
n→∞

‖xn − x∗‖ ≤ lim
n→∞

(‖xn − wn‖+ ‖wn − x∗‖) = 0.

This completes the proof. �
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Remark 3.4. Theorem 3.2 (and Corollary 3.3) develops and complements the
corresponding results in Cho et al. [3], Halpern [6], Lions [12], Moudafi [14],
Reich [17, 18], Shioji and Takahashi [19], Wittmann [20] and Xu [21, 22].
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