• Title/Summary/Keyword: Synchronous reference frame

Search Result 176, Processing Time 0.029 seconds

Model Predictive Control for Shunt Active Power Filter in Synchronous Reference Frame

  • Al-Othman, A.K.;AlSharidah, M.E.;Ahmed, Nabil A.;Alajmi, Bader. N.
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.405-415
    • /
    • 2016
  • This paper presents a model predictive control for shunt active power filters in synchronous reference frame using space vector pulse-width modulation (SVPWM). The three phase load currents are transformed into synchronous rotating reference frame in order to reduce the order of the control system. The proposed current controller calculates reference current command for harmonic current components in synchronous frame. The fundamental load current components are transformed into dc components revealing only the harmonics. The predictive current controller will add robustness and fast compensation to generate commands to the SVPWM which minimizes switching frequency while maintaining fast harmonic compensation. By using the model predictive control, the optimal switching state to be applied to the next sampling time is selected. The filter current contains only the harmonic components, which are the reference compensating currents. In this method the supply current will be equal to the fundamental component of load current and a part of the current at fundamental frequency for losses of the inverter. Mathematical analysis and the feasibility of the suggested approach are verified through simulation results under steady state and transient conditions for non-linear load. The effectiveness of the proposed controller is confirmed through experimental validation.

A Novel Rotor Position Estimation Method using a Rotation Matrix for a Square-Wave Signal Injected Sensorless Control in IPMSM (IPMSM의 맥동하는 구형파 신호 주입 센서리스 제어를 위한 정지좌표계상에서의 새로운 위치 추정 기법)

  • Kim, Sang-Il;Kim, Rae-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.3
    • /
    • pp.215-223
    • /
    • 2016
  • In this study, a novel rotor position sensorless estimation method of an interior permanent-magnet synchronous motor is proposed. A square-wave pulsating voltage signal is injected in the estimated synchronous reference frame. This signal is interpreted in the stationary reference frame regardless of the estimated rotor position. Thus, assuming that the position error is nearly zero is unnecessary because the variables in the estimated synchronous reference frame are not used. The rotor position can be exactly calculated from two voltage references and three sampled current feedbacks in the stationary reference frame. The proposed method is easy to implement and helps enhance the bandwidth of the current controller. The validity of the proposed method is verified by simulations and experiments.

DQ Synchronous Reference Frame Model of a Series-Parallel Tuned Inductive Power Transfer System (직렬-병렬 공진 무선전력전송 시스템의 동기 좌표계 모델)

  • Noh, Eun-Chong;Lee, Sang-Min;Lee, Seung-Hwan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.6
    • /
    • pp.477-483
    • /
    • 2020
  • This study proposes a DQ synchronous reference frame model of a series-parallel tuned inductive power transfer (SP-IPT) system. The wireless power transmission system experiences control difficulty because the transmitter-side controller cannot directly measure the receiver-side load voltages and currents. Therefore, a control-oriented circuit model that shows the dynamics of the IPT system is required to achieve a well-behaved controller. In this study, an equivalent circuit model of the SP-IPT system in a synchronously rotating reference frame is proposed using the single-phase DQ transformation technique. The proposed circuit model is helpful in modeling the dynamics of the voltages and currents of the transmitter- and receiver-side resonant tanks and loads. The proposed circuit model is evaluated using frequency- and time-domain simulation results.

A New Synchronous Reference Frame-Based Method for Single-Phase Shunt Active Power Filters

  • Monfared, Mohammad;Golestan, Saeed;Guerrero, Josep M.
    • Journal of Power Electronics
    • /
    • v.13 no.4
    • /
    • pp.692-700
    • /
    • 2013
  • This paper discusses the design of a novel synchronous reference frame (SRF) method that can extract the reference compensating current for single-phase shunt active power filters (APFs). Unlike previous SRF studies, the proposed method has an innovative feature that does not require a fictitious current signal. Other key features of the proposed strategy include frequency-independent operation, accurate reference current extraction, and relatively fast transient response. The effectiveness of the proposed method is investigated by conducting a detailed mathematical analysis. Results of the analysis confirm the superior performance of the suggested approach. Theoretical evaluations are confirmed by the experimental results.

A Synchronous-Reference-Frame-Based Single-Phase UPQC for AC Electrified Railway Systems (동기좌표계를 이용한 교류 전기철도용 단상 UPQC)

  • Park, Han-Eol;Kang, Ok-Ku;Jang, Woo-Jin;Song, Hwa-Chang;Song, Joong-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.5
    • /
    • pp.694-699
    • /
    • 2009
  • This paper presents a synchronous-reference-frame-based control of single-phase UPQC(Unified Power Quality Conditioner) to improve power quality in ac electrified railway systems. The proposed synchronous-reference-frame-based UPQC can compensate the voltage distortion, the voltage sag, the harmonic currents, and the reactive power instantaneously. The simulation results show that the UPQC can compensate the harmonic supply voltages, the voltage sag, the harmonic load currents, and the reactive power in electrified railway systems. Validity and effectiveness of the proposed UPQC control method based on the synchronous-reference-frame is illustrated through the simulation results.

A Study on Current Ripple Reduction Due to Offset Error in SRF-PLL for Single-phase Grid-connected Inverters (단상 계통연계형 인버터의 SRF-PLL 옵셋 오차로 인한 전류 맥동 저감에 관한 연구)

  • Hwang, Seon-Hwan;Hwang, Young-Gi;Kwon, Soon-Kurl
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.11
    • /
    • pp.68-76
    • /
    • 2014
  • This paper presents an offset error compensation algorithm for the accurate phase angle of the grid voltage in single-phase grid-connected inverters. The offset error generated from the grid voltage measurement process cause the fundamental harmonic component with grid frequency in the synchronous reference frame phase lock loop (PLL). As a result, the grid angle is distorted and the power quality in power systems is degraded. In addition, the dq-axis currents in the synchronous reference frame and phase current have the dc component, first and second order ripples compared with the grid frequency under the distorted grid angle. In this paper, the effects of the offset and scaling errors are analyzed based on the synchronous reference frame PLL. Particularly, the offset error can be estimated from the integrator output of the synchronous reference frame PLL and compensated by using proportional-integral controller. Moreover, the RMS (Root Mean Square) function is proposed to detect the offset error component. The effectiveness of the proposed algorithm is verified through simulation and experiment results.

High Performance Current Control Algorithm Based on Virtual DQ Synchronous Reference Frame for Single-Phase Boost PFC Converter (단상 부스트 PFC 컨버터용 가상 DQ 동기좌표계 기반 고성능 전류제어 알고리즘)

  • Kim, Hyun-Geun;Jin, Seong-Min;Lee, Sang-Hee;Lee, Su-Hyoung;Kim, Joohn-Sheok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.6
    • /
    • pp.496-503
    • /
    • 2017
  • This study proposes a high-performance current control algorithm for a diode-bridge-type single-phase boost power factor correction (PFC) converter. The conventional asynchronous single-phase current controllers that directly control AC-type current tend to be accompanied by steady-state errors due to their poor dynamic characteristics for the transient-state, which can be attributed to bandwidth limitations and phase delays. In the proposed algorithm, an ideal current control with minimal phase delays and steady-state errors can be achieved by using a virtual DQ synchronous reference frame and by controlling the synchronous reference frame excluding the frequency component in the single-phase system. The performance of the conventional asynchronous single-phase current controller is compared with that of the proposed algorithm through simulation and experiments, and the results have confirmed the superiority of the latter.

An Improved Stationary Frame-based Digital Current Control Scheme for a PM Synchronous Motor

  • Kim Kyeong-Hwa;Youn Myung-Joong
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.174-178
    • /
    • 2001
  • An improved stationary frame-based digital current control technique for a permanent magnet (PM) synchronous motor is presented. Generally, the stationary frame current controller is known to provide the advantage of a simple implementation. However, there are some unavoidable limitations such as a steady-state error and a phase delay in the steady-state. On the other hand, in the synchronous frame current regulator, the regulated currents are dc quantities and a zero steady-state error can be obtained through the integral control. However, the need to transform the signals between the stationary and synchronous frames makes the implementation of a synchronous frame regulator complex. Although the PI controller in the stationary frame gives a steady-state error and a phase delay, the control performance can be greatly improved by employing the exact decoupling control inputs for the back EMF, resulting in an ideal steady-state control characteristics irrespective of an operating condition as in the synchronous PI decoupling controller. However, its steady-state response may be degraded due to the inexact cancellation inputs under the parameter variations. To improve the control performance in the stationary frame, the disturbance is estimated using the time delay control. The proposed scheme is implemented on a PM synchronous motor using DSP TMS320C31 and the effectiveness is verified through the comparative simulations and experiments.

  • PDF

An Improved Stationary Frame-based Digital Current Control Scheme for a PM Synchronous Motor

  • Kim, Kyeong-Hwa;Young, Myung-Joong
    • Journal of Power Electronics
    • /
    • v.1 no.2
    • /
    • pp.88-98
    • /
    • 2001
  • An improved stationary frame-based digital current control technique for a permanent magnet(PM) synchronous motor is presented. Generally, the stationary frame current controller is known to provide the advantage of a simple implementation. However, there are some unavoidable limitations such as a steady-state error and a phase delay in the steady-state. On the other hand, in the synchronous frame current regulator the regulated currents are dc quantities and a zero steady-state error can be obtained through the integral control. However, the need to transform the signals between the stationary and synchronous frames makes the implementation of a synchronous frame regulator complex. Although the PI controller in the stationary frame gives a steady-state error and a phase delay, the control performance can be greatly improved by employing the exact decoupling control inputs for the back EMF., resulting in an ideal steady-state control characteristics irrespective of an operating condition as in the synchronous PI decoupling controller. However, its steady-state response may be degraded due to the inexact cancellation inputs under the parameter variations. To improve the control performance in the stationary frame, the disturbance is estimated using the time delay control. The proposed scheme is implemented on a PM synchronous motor using DSP TMS320C31 and the effectiveness is verified through the comparative simulations and experiments.

  • PDF

Inductance Measurement of Interior Permanent Magnet Synchronous Motor in Stationary Frame of Reference

  • Lee, Geun-Ho;Choi, Woong-chul;Lee, Byeong-Hwa;Jung, Jae-Woo;Hong, Jung-Pyo
    • Journal of Magnetics
    • /
    • v.16 no.4
    • /
    • pp.391-397
    • /
    • 2011
  • An inductance measurement method for interior permanent magnet synchronous machine (IPMSM) is proposed in this paper. In this method, the motor is measured at standstill condition, and only a 3-phase voltage source, an oscilloscope and a DC voltage source are required. Depending on the deductive dq-axis voltage equations in the stationary frame of reference, the dq-axis inductances at different current magnitude and vector angle can be calculated by the measured 3-phase voltages and currents. And hence, the saturation and cross-magnetizing effect of the inductances are measurable. This paper introduces the principle equations, experiment setup, data processing, and results comparison on the concentrated-winding and distributed-winding IPMSMs.