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Abstract – This paper presents a model predictive control for shunt active power filters in 
synchronous reference frame using space vector pulse-width modulation (SVPWM). The three phase 
load currents are transformed into synchronous rotating reference frame in order to reduce the order of 
the control system. The proposed current controller calculates reference current command for 
harmonic current components in synchronous frame. The fundamental load current components are 
transformed into dc components revealing only the harmonics. The predictive current controller will 
add robustness and fast compensation to generate commands to the SVPWM which minimizes 
switching frequency while maintaining fast harmonic compensation. By using the model predictive 
control, the optimal switching state to be applied to the next sampling time is selected. The filter 
current contains only the harmonic components, which are the reference compensating currents. In this 
method the supply current will be equal to the fundamental component of load current and a part of the 
current at fundamental frequency for losses of the inverter. Mathematical analysis and the feasibility of 
the suggested approach are verified through simulation results under steady state and transient 
conditions for non-linear load. The effectiveness of the proposed controller is confirmed through 
experimental validation. 
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1. Introduction 
 
Power electronic devices impose nonlinear loads on the 

ac mains, such as single-phase and three-phase diode 
rectifiers, thyristor converters and electronic appliances [1]. 
Aluminum smelter plants and large electrolysis chemical 
plants, in which large DC rectifiers with high power 
ratings, are usually used [2, 3]. They generate considerable 
amounts of characteristic and non-characteristic harmonics, 
which will be harmful for other loads connected to the 
same bus. In such plants, auxiliary control, protection 
measuring systems and kWh counters severely suffer from 
these harmonics [4]. Also, large DC drives used in cement 
factories or in electric traction application generate 
enormous harmonics. DC arc furnaces generate several 
harmonics in the feeding system [5, 6]. Electrolysis of 
water and wind mill generators are other examples of 
harmonic pollution. Many international agencies have 
implemented firm harmonic restrictions to electronic 
equipment [7, 8]. To overcome these problems, classically, 
passive LC filters are used to eliminate the current 
harmonics and to improve the power factor. However, 

passive LC filters are bulky, load dependent and inflexible 
[9, 10]. As a result, a vast number of power factor correction 
techniques have been developed in compliance with these 
regulations [11, 12]. As an alternative, parallel harmonic 
correction techniques, shunt active power filters (APFs), 
have been explored by many researchers and considered as 
a possible solution for reducing current harmonics and 
improving the power quality [13-14]. The APF is required 
to generate a matched reactive and harmonic current to 
compensate for the negative effect of nonlinear loads on 
the line, thus it handles only the fraction of the total power 
supplied to the load.  

Many articles have been published that focus on 
obtaining the current reference for three-phase or single-
phase APF. Standard APFs configurations require the 
measurement of both load and filter currents with reference 
current regulators implemented by hysteresis and PWM 
modulators. Ozdemir et al. proposed a simplified control 
algorithm for shunt APF without load and filter current 
measurement in [15]. In [16], Chen developed a state-
space model of the four-leg APF based on H controller for 
current tracking from the passivity point of view based 
on 4-leg VSI. In [17], APF is combined with thyristor 
switched capacitor for the purpose of reducing cost. A 
model predictive control (MPC) is presented where 
Fuzzy model predictive control [18] and neural network 
predictive control [19] are used in shunt APFs, but the 
control designs are still complicated. Mohanty evaluates 
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the performance of shunt APF for two different control 
strategies namely hysteresis current control and space vector 
pulse width modulation [20]. The same concept is used 
in [21] by Mendalek, where the voltage level of the dc 
side is regulated using a linearizing feedback control. In 
[22], Wang developed a simplified MPC method for shunt 
APFs. Da Silva in [23] proposed a compensation algorithm 
used to extract the reference currents. However, still three 
predictive current control models for each phase are used. 
Moreover, the cross-coupling terms between dq axis and 
synchronous frame system have not been taken into 
account. Many other attempts are proposed and discussed 
several techniques in order to improve the efficiency and 
the performance of APF [24-35]. In [36], Vatani et al. 
proposed finite control set MPC based on p-q theory to 
control a three phase Neutral Point Clamped multi-level 
converter to act as a shunt APF. The predictions are used 
to estimate the reference current two steps ahead. 
Nevertheless, multi-level converters have drawbacks 
such as complex topologies and bulky circuitry structures, 
higher costs, complexity of the control system and higher 
active power losses.  

In this paper a model based MPC for shunt APF in 
synchronous reference frame dq0 is presented. The 
proposed MPC has the advantage of exhibiting faster 
performance due to the removal of the trajectory reference 
stage; which is normally adopted in conventional MPC to 
make the system arrive to its reference value softly. In 
addition, handling of the control variables in dq0 space, 
leads to reduction of the required number of current 
controllers to two instead of three. Moreover, dq0 
transformation allows for the control procedure to proceed 
with constant quantities instead of time variant quantities.  

The input stage of the MPC is the dq synchronous 
reference frame harmonic current and the output stage is 
synchronous frame harmonic current commands which 
are the input commands to the space vector pulse width 
modulation (SVPWM) generator. In this way the supply 
current will be equal to the fundamental component of load 
current and a part of the current at fundamental frequency 
for losses of the inverter system. A decoupling stage 
outputs the synchronous frame voltages which are the input 
commands to the SVPWM generator is utilized to let the 
currents injected by the filter track rapidly their references. 
Additionally, the dc voltage level is not need to be 
regulated in the proposed system. 

 
 
2. Design and Modelling of the APF with MPC 
 
From the shunt APF circuit connected in parallel with 

the electric system shown in Fig. 1, the step-wise model 
equations can be derived. The non-linear load draws 
currents ( )L abci and the supply currents denotes ( )S abci . The 
APF will be supplying only the harmonic currents ( )

ˆ
abci . 

The dynamic analytical model of the APF filter is 

developed in its original three-phase abc frame and the 
model is then transformed to the synchronous reference 
frame. 

The APF system of equations can be described as:  
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where abcv and abcu  are the source and APF voltages, 
respectively. R and L are the smoothing inductor 
inductance and resistance. 

Transforming the above currents in synchronous reference 
frame using the transformation matrix: 
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where 0dqu  could be obtained from  
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Hence, 0dqu  is found for the three-phase system to be  
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2.1 Modeling synchronous predictive controller 

 
In order to obtain a closed loop mathematical form for 

the controller, discretizing Eq. (4) becomes necessary as in  

Fig. 1. Shunt active power filter connected to electric 
system. 
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Assuming a three-phase balanced power source, the dq0v  

term can be removed from Eq. (5) 
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Hence, solving Eq. (6) for dq0v and replacing 1k k= +  

results in the predictive system of equations 
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s

LT
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 is the cross-coupling 

term between the d and q axis, and it acts as a feedback 
loop between them. The first order differential equation 
for the APF model is used as the predictive current 
controller without the source disturbance. The single step 
predictive model of the active power filter output current 
in synchronous reference frame is reduced to d  and d  
components for a balanced three phase system. 

The cross-coupling term after manipulation turns into 
an angular coefficient labeled cross-coupling angular 
correction and expressed as 
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Where fT  is the fundamental frequency and  τ  is the RL 
time constant. It is noted here that in the predictive control 
and error correction, ˆ erτ τ τ= ⋅ , where erτ  is the error 
coefficient in the time constant. 

 
2.2 Controller feedback correction 

 
In MPC modelling, feedback correction is necessary to 

account for the drift in the predictive model equations due 

to the non-linear nature of the APF. Therefore, an error 
( )e k  is added to the output current of the APF to account 

for such discrepancy. 
 

 ( ) ( ) ( )0 01 1dq dqi k i k e kδ+ = + +   (9) 
 

where the error is calculated as the difference between 
the actual current at k  and the predicted current 0dqi  at 
the same discrete instance. Where δ  is the correction 
coefficient. The reference trajectory block is necessary for 
applications that requires the output to arrive at reference 
values softly. While in APF implementation, this is omitted 
as the predictive controller is required to quickly respond 
to reference commands and is required to fast track any 
changes in the reference values. 

 
2.3 Controller dynamic optimization 

 
MPC dynamic optimization requires an objective function 

that will track changes in the commands online. The 
weighted quadratic performance index is commonly used 
in dynamic optimization as its objective function and 
expressed as 

 
 ( ) ( ) ( )2* 2

0 0 01 1 1dq dq dqJ q i k i k u kλ⎡ ⎤= + − + + ⋅ +⎣ ⎦   (10) 
 

where the parameters q  is the weighting coefficient of the 
predictive error and λ  is the predictive control variable. It 
is noted that the control variables of the APF are its voltage 

0dqu  and are set as the input commands to the APF. The 
optimal performance of the controller can be achieved by 
differentiating the objective function J with respect to the 
voltage comaned and equating that to zero 0( )/dJ du = .  
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Fig. 2 debicts the block diagram of the proposed MPC. 
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Implementaion of the controller is fairlly easy. The voltage 
at the point of the filter connection is considered as a 
disturbance and omitted by the closed loop. The colsed 
loop consists of feedback correction and dynamic optimi-
zation. Therefore, no voltage sensors are required by the 
MPC controller. Hence, cost reduction is is likely attained. 
Furthermore, calculating the control variables of the next 
sampling, at instant k+1, is carried out at instent k, that 
enables rapid tracking and fast dynamic reponce. 

 
2.4 Controller design parameters 

 
The model predictive controller is realized as in Fig. 3. 

The values for the resistance and inductance used are 0.225 
Ω and 2 mH respectively, which results in: 

 
 α= 4.94E-02 
 β= 9.89E-01 
 φ= 3.73E-02 rad/s 

The dynamic optimization parameters (λ, q) were chosen 
after an in depth evaluation as in [22] and after a number of 
trial and evaluation attempts, a value of λ=1 and q=5000 is 
selected which allows fast tracking of the command signal 
with relatively minimal ripple. 

The final block diagram of the simulation and practical 
implementation of proposed MPC for shunt APF is 
illustrated in Fig. 3.  

 
 

3. Simulation Results 
 
Implementation of the proposed MPC for APF in 

synchronous reference frame has been carried out in PSIM 
software to study the performance of the proposed control 

Fig. 2. Predictive controller for the APF 

 
Fig. 3. Block diagram of MPC for simulation and practical 

implementation. 

0.35 0.37 0.39 0.41 0.43 0.450.451
-200

-150

-100

-50

0

50

100

150

200

 

 Va
Vb
Vc

 
(a) Grid voltages 

0.35 0.37 0.39 0.41 0.43 0.45
-100

-80

-60

-40

-20

0

20

40

60

80

100

 

 

Ia
Ib
Ic

 
(b) Three-phase grid currents 
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(c) Phase A currents 

Fig. 4. Grid Voltages and currents during APF connection
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strategy. The feasibility of the suggested predictive 
current control is verified through simulation results 
under steady state and transient conditions for non-linear 
load. The simulation results will be discussed in the 
following: 

The command current was obtained by sampling the 
load current including harmonics and then subtracting the 
fundamental desired current, resulting in the harmonic 
contents required to be removed. Fig. 4 shows the grid 
voltage and currents with and without APF. The simulation 
was started at t = 0.0s, where the APF was turned off 
between 0 < t < 0.4s. During this period of time, the current 
supplied by the grid is the nonlinear load current, which 
is non sinusoidal and includes harmonic contents. At t=0.4s 
the active power filter is turned on. During this period, the 
APF samples the grid current and supplies the appropriate 
harmonic currents required by the nonlinear load. After 
t=0.4s, the grid currents are shown to be sinusoidal at the 
operating point of 50A rms. The harmonic contents in the 
grid currents are nearly eliminated and the grid currents 
become almost sinusoidal as shown in Fig. 4(b). The grid 
currents for a step change in the nonlinear load current at 
t = 0.8 sec. is illustrated in Fig. 4(c), which shows a fast 
dynamic response of the proposed MPC. 

The function of the APF predictive controller is investi-
gated under a step change in the non-linear load profile. A 
step change in the load current is introduced at t = 0.8s is 
shown in Fig. 5. As it can be seen from the Fig. 5(a), the 
three-phase grid currents move toward the new operating 
point of 105A rms. The grid currents remain sinusoidal as 

the predictive controller of the APF dynamically adjusts to 
the new operating point. It can be seen here that the 
predictive controller is able to handle a step change and 
adjusts for the new operation conditions to reach steady 
state values within three cycles. It also instantaneously 
supplies the required harmonics on demand and partial 
fundamental current during the sudden load change. This 
means, the APF acts as a smoother for the grid current 
during the sudden change in operating point. As it can be 
seen, the grid current remains sinusoidal and within 
0.048 sec meets the required current. During this process, 
the APF supplies the harmonic current component required 
by the load in addition to a transitional component of the 
fundamental current. In this case, no harmonic component 
exhibited by the grid and the function of the active power 
filter fulfills the requirement of the step change in load. 
It is worthy to note that this particular APF is designed to 
meet the power requirement of this specific application. 

To illustrate the fast performance characteristics of the 
predictive controller of the APF, Fig. 6(a) shows the load 
harmonic component and active power filter currents. 
Between 0 < t < 0.4s, it can be seen that the APF is 
disconnected and the load currents including its harmonic 
contents are totally supplied by the grid. After t = 0.4s, 
the APF is connected and instantly tracks the harmonic 
component of the load. At t = 0.8s a step change in the 
load occurs and Fig. 6(b) shows the APF controller 
compensation for the sudden change in load requirement 
and in addition, it transitions the grid current into its new 
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(b) Phase A currents 

Fig. 5. Grid currents at step change in load. 
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Fig. 6. APF and load currents. 
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operating point without any major disturbance or noise, see 
Fig. 5. 

In parallel to the grid current above, Fig. 7 shows one-
phase of the APF injected currents for the same particular 
periods. It is worth mentioning here that the APF tracking 
of the harmonic components in grid currents is instantaneous. 
As seen from the lower part of Fig. 7, the APF supplies 
both the fundamental and harmonic current during next 
three cycles after the step change in load current. 

Fig. 8 shows the harmonic contents of the grid current 
(Phase A) before and after the APF connection. Before the 
filter connection, the THD content was %20 while the 
active power filter reduced the content for the same period 
to less than %5. 

 
Fig. 8. Total harmonic distortion content in grid current. 
 
 

4. Experimental results 
 
The performance of the proposed active power filter is 

verified experimentally with the configuration shown in 
Fig. 9. The experimental platform consists of grid emulator 
to supply the nonlinear load, three phase dc/ac SVPWM 
inverter acting as APF with a 10KHz switching frequency 
to generate and inject the required harmonics. A dSPACE 
DS1103-based digital signal processor is used to generate 
the gating signals and implement the proposed control 
scheme. The APF is practically implemented using sing 
Powerex CM150TX-24 intelligent power module (IGBT) 
produced by Mitsubishi Co. Ltd. The nonlinear load is 
represented by a three-phase full wave diode-bridge 
rectifier using 6RI75G-120 by Fuji Electric with resistive 
load. The grid voltages are measured using CYVS411D07-
380V-6_01 high accuracy AC voltage sensors. Two sets 
of three CYCS411D47-8A-5 high accuracy AC current 
sensors are used for measuring the load and the APF 
injected currents. A DSO7104A Agilent digital oscilloscope 
is used to display and capture the output waveforms and 
a Fluke 43B power quality analyzer is used for harmonic 
calculations. The dSPACE DS1103 controller board 
provides a real-time interface (RTI) between the hardware 
and the computer model created in Matlab Simulink. 

A prototype of power rating of 2 kW is practically 
examined and the experimental results will be discussed in 
the following. Fig. 9 demonstrates the overall appearance 
of the experimental setup with the design specifications and 
circuit parameters used in the simulation and experimental 
tests are listed in Table 1. 

The distorted load current of non-linear load of three-
phase diode-bridge rectifier is compared with its funda-
mental signal to generate the required feedback signalof the 
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(a) Three-phase APF injected currents, load change 
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Fig. 7. Active power filter injected currents tracking 
capability. 



A. K. Al-Othman, M. E. AlSharidah, Nabil A. Ahmed and Bader. N. Alajmi 

 http://www.jeet.or.kr │ 411

proposed controller.  
Fig. 10 shows a phase A distorted load current along 

with its harmonic contents and its fundamental component. 
The shunt active power filter is connected with the series 
reactor to eliminate the grid current harmonics. Fig. 11 
shows the three-phase load currents, APF injected currents 
and grid currents.  

Fig. 12 shows the wafeforms of three-phase grid currents 
at a step change in load, which reflects the rapid tracking 
performance and fast dynamic reponse of proposed MPC 
controller under sudden load change. The transition to new 

operating point appears smooth due to the interaction of the 
APF which is responsible for eliminating the harmonic 
currents in addition to ensuring soft transition of the grid 
current fundamental value to the new operating point 
without any undesired harmonic components. 

Fig. 13 shows the grid voltage and current, phase A. It is 

Table 1. Design specifications and circuit constants 

Parameter Symbol Value 
Power rating KVA 1.5 KVA 

Grid voltage Vsm 110 V 

Rated current I 8A 

Supply frequency fs 50 HZ 

Switching frequency fc 10 kHZ 

Load resistance RL Ω20 

Coupling inductor L 1 mH 

Dead time td μ3 Sec 
Inverter Powerex IGBT CM150TX-24 

Diode-bridge rectifier 6RI75G-120 

Current sensors CYCS411D47-8A-5 

Voltage sensors CYVS411D07-380V-6_01 

 

 
Fig. 9. Test rig photograph 

 

 
Fig. 10. The load current (upper trace), its harmonics 

(middle) and fundamental component (lower) 

 
(a) Load currents 

 
(b) APF injected currents 

 
(c) Grid currents 

Fig. 11. Three phase system currents 
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clear to obvious that the grid current become sinusoidal 
and in phase with the grid voltage.  

Harmonic spectrums of the grid current before and after 
connecting the proposed MPC for APF are shown in Figs. 
14(a) and (b), respectively. The total harmonic distortion 

(THD) in the grid current is computed and it is found to 
be 28.2% before harmonic compensation and 3% after 
harmonic current compensation that is that means a high-
quality sinusoidal waveforms within the limit of the of 519 
IEEE harmonic standard of grid current is obtained using 
the proposed APF.  

 
 

5. Conclusion 
 
A predictive current control for a three-phase three wire 

current source shunt active power filter has been presented 
in this paper. The control approach uses the predicted value 
of the direct and quadrature error in synchronous reference 
frame and the optimal switching state to be applied to the 
next sampling time is selected to control the inverter with 
minimum switching frequency while maintaining fast 
harmonic compensation. Moreover, this control approach 
does not require supply voltage sensing, which generally 
reduces the system complexity. Mathematical analyses 
have been presented and simulation results are performed 
under steady state and transient conditions for non-linear 
loads to validate the theoretical development and confirm 
the performance of proposed approach. The presented 
simulation results indicate that the presented control 
approach provides fast dynamic response and good 
tracking of the harmonic compensation to its reference 

 
(a) Step up in load 

 
(b) Step down in load 

Fig. 12. Three-phase grid currents at step change in load. 
 

 
Fig. 13. Grid voltage and current, phase A 

 
(a) Harmonic spectrum before connecting the APF 

 
(b) Harmonic spectrum after connecting the APF 

Fig. 14. Harmonic spectrum of the grid current 
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value. The proposed predictive current control is simple 
and very easy to implement compared to classical PWM 
techniques. As assessment comparing both predictive and 
classical PI control techniques is considered for a future 
study, as well the operation at unity input power factor, 
allowing harmonic current compensation and reactive 
power compensation. 
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