• Title/Summary/Keyword: Subthreshold swing voltage

Search Result 120, Processing Time 0.465 seconds

InGaZnO active layer 두께에 따른 thin-film transistor 전기적인 영향

  • U, Chang-Ho;Kim, Yeong-Lee;An, Cheol-Hyeon;Kim, Dong-Chan;Gong, Bo-Hyeon;Bae, Yeong-Suk;Seo, Dong-Gyu;Jo, Hyeong-Gyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.5-5
    • /
    • 2009
  • Thin-film-transistors (TFTs) that can be prepared at low temperatures have attracted much attention because of the great potential for transparent and flexible electronics. One of the mainstreams in this field is the use of organic semiconductors such as pentacene. But device performance of the organic TFTs is still limited due to low field-effect mobility and rapid degradation after exposing to air. Alternative approach is the use of amorphous oxide semiconductors as a channel. Amorphous oxide semiconductors (AOSs) based TFTs showed the fast technological development, because AOS films can be fabricated at room temperature and exhibit the possibility in application like flexible display, electronic paper, and larges solar cells. Among the various AOSs, a-IGZO has lots of advantages because it has high channel mobility, uniform surface roughness and good transparency. [1] The high mobility is attributed to the overlap of spherical s-orbital of the heavy post-transition metal cations. This study demonstrated the effect of the variation in channel thickness from 30nm to 200nm on the TFT device performance. When the thickness was increased, turn-on voltage and subthreshold swing was decreased. The a-IGZO channels and source/drain metals were deposited with shadow mask. The a-IGZO channel layer was deposited on $SiO_2$/p-Si substrates by RF magnetron sputtering, where RF power is 150W. And working pressure is 3m Torr, at $O_2/Ar$ (2/28 sccm) atmosphere. The electrodes were formed with electron-beam evaporated Ti (30 nm) and Au (70 nm) bilayer. Finally, Al (150nm) as a gate metal was thermal-evaporated. TFT devices were heat-treated in a furnace at 250 $^{\circ}C$ and nitrogen atmosphere for 1hour. The electrical properties of the TFTs were measured using a probe-station. The TFT with channel thickness of 150nm exhibits a good subthreshold swing (SS) of 0.72 V/decade and on-off ratio of $1{\times}10^8$. The field effect mobility and threshold voltage were evaluated as 7.2 and 8 V, respectively.

  • PDF

Effects of thickness of GIZO active layer on device performance in oxide thin-film-transistors

  • Woo, C.H.;Jang, G.J.;Kim, Y.H.;Kong, B.H.;Cho, H.K.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.137-137
    • /
    • 2009
  • Thin-film transistors (TFTs) that can be prepared at low temperatures have attracted much attention due to the great potential for flexible electronics. One of the mainstreams in this field is the use of organic semiconductors such as pentacene. But device performance of the organic TFTs is still limited by low field effect mobility or rapidly degraded after exposing to air in many cases. Another approach is amorphous oxide semiconductors. Amorphous oxide semiconductors (AOSs) have exactly attracted considerable attention because AOSs were fabricated at room temperature and used lots of application such as flexible display, electronic paper, large solar cells. Among the various AOSs, a-IGZO was considerable material because it has high mobility and uniform surface and good transparent. The high mobility is attributed to the result of the overlap of spherical s-orbital of the heavy pest-transition metal cations. This study is demonstrated the effect of thickness channel layer from 30nm to 200nm. when the thickness was increased, turn on voltage and subthreshold swing were decreased. a-IGZO TFTs have used a shadow mask to deposit channel and source/drain(S/D). a-IGZO were deposited on SiO2 wafer by rf magnetron sputtering. using power is 150W, working pressure is 3m Torr, and an O2/Ar(2/28 SCCM) atmosphere at room temperature. The electrodes were formed with Electron-beam evaporated Ti(30nm) and Au(70nm) structure. Finally, Al(150nm) as a gate metal was evaporated. TFT devices were heat treated in a furnace at $250^{\circ}C$ in nitrogen atmosphere for an hour. The electrical properties of the TFTs were measured using a probe-station to measure I-V characteristic. TFT whose thickness was 150nm exhibits a good subthreshold swing(S) of 0.72 V/decade and high on-off ratio of 1E+08. Field effect mobility, saturation effect mobility, and threshold voltage were evaluated 7.2, 5.8, 8V respectively.

  • PDF

The Optimization of $0.5{\mu}m$ SONOS Flash Memory with Polycrystalline Silicon Thin Film Transistor (다결정 실리콘 박막 트랜지스터를 이용한 $0.5{\mu}m$ 급 SONOS 플래시 메모리 소자의 개발 및 최적화)

  • Kim, Sang Wan;Seo, Chang-Su;Park, Yu-Kyung;Jee, Sang-Yeop;Kim, Yun-Bin;Jung, Suk-Jin;Jeong, Min-Kyu;Lee, Jong-Ho;Shin, Hyungcheol;Park, Byung-Gook;Hwang, Cheol Seong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.10
    • /
    • pp.111-121
    • /
    • 2012
  • In this paper, a poly-Si thin film transistor with ${\sim}0.5{\mu}m$ gate length was fabricated and its electrical characteristics are optimized. From the results, it was verified that making active region with larger grain size using low temperature annealing is an efficient way to enhance the subthreshold swing, drain-induced barrier lowering and on-current characteristics. A SONOS flash memory was fabricated using this poly-Si channel process and its performances are analyzed. It was necessary to optimize O/N/O thickness for the reduction of electron back tunneling and the enhancement of its memory operation. The optimized device showed 2.24 V of threshold voltage memory windows which coincided with a well operating flash memory.

Low voltage operating $InGaZnO_4$ thin film transistors using high-k $MgO_{0.3}BST_{0.7}$ gate dielectric (고유전 $MgO_{0.3}BST_{0.7}$ 게이트 절연막을 이용한 $InGaZnO_4$ 기반의 트랜지스터의 저전압 구동 특성 연구)

  • Kim, Dong-Hun;Cho, Nam-Gyu;Chang, Young-Eun;Kim, Ho-Gi;Kim, Il-Doo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.40-40
    • /
    • 2008
  • $InGaZnO_4$ based thin film transistors (TFTs) are of interest for large area and low cost electronics. The TFTs have strong potential for application in flat panel displays and portable electronics due to their high field effect mobility, high on/off current ratios, and high optical transparency. The application of such room temperature processed transistors, however, is often limited by the operation voltage and long-tenn stability. Therefore, attaining an optimum thickness is necessary. We investigated the thickness dependence of a room temperature grown $MgO_{0.3}BST_{0.7}$ composite gate dielectric and an $InGaZnO_4$ (IGZO) active semiconductor on the electrical characteristics of thin film transistors fabricated on a polyethylene terephthalate (PET) substrate. The TFT characteristics were changed markedly with variation of the gate dielectric and semiconductor thickness. The optimum gate dielectric and active semiconductor thickness were 300 nm and 30 nm, respectively. The TFT showed low operating voltage of less than 4 V, field effect mobility of 21.34 cm2/$V{\cdot}s$, an on/off ratio of $8.27\times10^6$, threshold voltage of 2.2 V, and a subthreshold swing of 0.42 V/dec.

  • PDF

Sub-10 nm Ge/GaAs Heterojunction-Based Tunneling Field-Effect Transistor with Vertical Tunneling Operation for Ultra-Low-Power Applications

  • Yoon, Young Jun;Seo, Jae Hwa;Cho, Seongjae;Kwon, Hyuck-In;Lee, Jung-Hee;Kang, In Man
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.2
    • /
    • pp.172-178
    • /
    • 2016
  • In this paper, we propose a sub-10 nm Ge/GaAs heterojunction-based tunneling field-effect transistor (TFET) with vertical band-to-band tunneling (BBT) operation for ultra-low-power (LP) applications. We design a stack structure that is based on the Ge/GaAs heterojunction to realize the vertical BBT operation. The use of vertical BBT operations in devices results in excellent subthreshold characteristics with a reduction in the drain-induced barrier thinning (DIBT) phenomenon. The proposed device with a channel length ($L_{ch}$) of 5 nm exhibits outstanding LP performance with a subthreshold swing (S) of 29.1 mV/dec and an off-state current ($I_{off}$) of $1.12{\times}10^{-11}A/{\mu}m$. In addition, the use of the highk spacer dielectric $HfO_2$ improves the on-state current ($I_{on}$) with an intrinsic delay time (${\tau}$) because of a higher fringing field. We demonstrate a sub-10 nm LP switching device that realizes a good S and lower $I_{off}$ at a lower supply voltage ($V_{DD}$) of 0.2 V.

A Dry-patterned Cu(Mg) Alloy Film as a Gate Electrode in a Thin Film Transistor Liquid Crystal Displays (TFT- LCDs) (TFT-LCDs 게이트 전극에 적용한 Cu(Mg) 합금 박막의 건식식각)

  • Yang Heejung;Lee Jaegab
    • Korean Journal of Materials Research
    • /
    • v.14 no.1
    • /
    • pp.46-51
    • /
    • 2004
  • The annealing of a Cu(4.5at.% Mg)/$SiO_2$/Si structure in ambient $O_2$, at 10 mTorr, and $300-500^{\circ}C$, allows for the outdiffusion of the Mg to the Cu surface, forming a thin MgO (15 nm) layer on the surface. The surface MgO layer was patterned, and successfully served as a hard mask, for the subsequent dry etching of the underlying Mg-depleted Cu films using an $O_2$ plasma and hexafluoroacetylacetone [H(hfac)] chemistry. The resultant MgO/Cu structure, with a taper slope of about $30^{\circ}C$ shows the feasibility of the dry etching of Cu(Mg) alloy films using a surface MgO mask scheme. A dry-etched Cu(4.5at.% Mg) gate a-Si:H TFT has a field effect mobility of 0.86 $\textrm{cm}^2$/Vs, a subthreshold swing of 1.08 V/dec, and a threshold voltage of 5.7 V. A novel process for the dry etching of Cu(Mg) alloy films, which eliminates the use of a hard mask, such as Ti, and results in a reduction in the process steps is reported for the first time in this work.

Pentacene-based Thin Film Transistors with Improved Mobility Characteristics using Hybrid Gate Insulator

  • Park, Chang-Bum;Jung, Keum-Dong;Jin, Sung-Hun;Park, Byung-Gook;Lee, Jong-Duk
    • Journal of Information Display
    • /
    • v.6 no.2
    • /
    • pp.16-18
    • /
    • 2005
  • Hybrid insulator pentacene thin film transistors (TFTs) are fabricated with thermally grown oxide and cross-linked polyvinylalcohol (PVA) including surface treatment by dilute ploymethylmethacrylate (PMMA) layer on $n^+$ doped silicon wafer. Through the optimization of $SiO_2$ layer thickness in hybrid insulator structure, carrier mobility is increased to more than 35 times than that of the TFT which has only a gate insulator of $SiO_2$ at the same electric field. The carrier mobility of $1.80cm^2$/V-s, subthreshold swing of 1.81 V/decade, and $I_{on}/I_{off}$ current ratio> $1.10{\times}10^5$ are obtained less than -30 V bias condition. The result is one of the best reported performances of pentacene TFTs with hybrid insulator including cross-linked PVA layer as a gate insulator at relatively low voltage operation.

Optimization of Double Gate Vertical Channel Tunneling Field Effect Transistor (DVTFET) with Dielectric Sidewall

  • WANG, XIANGYU;Cho, Wonhee;Baac, Hyoung Won;Seo, Dongsun;Cho, Il Hwan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.2
    • /
    • pp.192-198
    • /
    • 2017
  • In this paper, we propose a novel double gate vertical channel tunneling field effect transistor (DVTFET) with a dielectric sidewall and optimization characteristics. The dielectric sidewall is applied to the gate region to reduced ambipolar voltage ($V_{amb}$) and double gate structure is applied to improve on-current ($I_{ON}$) and subthreshold swing (SS). We discussed the fin width ($W_S$), body doping concentration, sidewall width ($W_{side}$), drain and gate underlap distance ($X_d$), source doping distance ($X_S$) and pocket doping length ($X_P$) of DVTFET. Each of device performance is investigated with various device parameter variations. To maximize device performance, we apply the optimum values obtained in the above discussion of a optimization simulation. The optimum results are steep SS of 32.6 mV/dec, high $I_{ON}$ of $1.2{\times}10^{-3}A/{\mu}m$ and low $V_{amb}$ of -2.0 V.

Dual-Gate Surface Channel 0.1${\mu}{\textrm}{m}$ CMOSFETs

  • Kwon, Hyouk-Man;Lee, Yeong-Taek;Lee, Jong-Duk;Park, Byung-Gook
    • Journal of Electrical Engineering and information Science
    • /
    • v.3 no.2
    • /
    • pp.261-266
    • /
    • 1998
  • This paper describes the fabrication and characterization of dual-polysilicon gated surface channel 0.1$\mu\textrm{m}$ CMOSFETs using BF2 and arsenic as channel dopants. We have used and LDD structure and 40${\AA}$ gate oxide as an insulator. To suppress short channel effects down to 0.1$\mu\textrm{m}$ channel length, shallow source/drain extensions implemented by low energy implantation and SSR(Super Steep Retrograde) channel structure were used. The threshold voltages of fabricated CMOSFETs are 0.6V. The maximum transconductance of nMOSFET is 315${\mu}$S/$\mu\textrm{m}$, and that of pMOSFET is 156 ${\mu}$S/$\mu\textrm{m}$. The drain saturation current of 418 ${\mu}$A/$\mu\textrm{m}$, 187${\mu}$A/$\mu\textrm{m}$ are obtained. Subthreshold swing is 85mV/dec and 88mV/dec, respectively. DIBL(Drain Induced Barrier Lowering) is below 100mV. In the device with 2000${\AA}$ thick gate polysilicon, depletion in polysilicon near the gate oxide results in an increase of equivalent gate oxide thickness and degradation of device characteristics. The gate delay time is measured to be 336psec at operation voltage of 2V.

  • PDF

무전해 식각법을 이용한 n-type 실리콘 나노와이어의 표면제어에 따른 전기적 특성

  • Mun, Gyeong-Ju;Lee, Tae-Il;Lee, Sang-Hun;Hwang, Seong-Hwan;Myeong, Jae-Min
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.35.2-35.2
    • /
    • 2011
  • 나노와이어를 제작하는 많은 방법들 중에서 실리콘 기판을 무전해식각하여 실리콘 나노와이어를 제작하는 방법은 쉽고 간단하기 때문에 최근 많은 연구가 진행되고 있다. 무전해식각법을 이용한 실리콘 나노와이어 합성은 단결정 실리콘 나노와이어를 합성할 수 있고, p 또는 n형의 도핑 정도에 따라 원하는 전기적 특성의 기판을 선택하여 제작할 수 있다는 장점을 가지고 있다. 하지만 n형으로 도핑된 기판으로 나노와이어를 제작하였을 경우 식각으로 인한 나노와이어 표면의 거칠기로 인하여, 실제로는 n형 반도체 특성을 나타내지 않는 문제점을 가지고 있다. 따라서 본 연구에서는 무전해식각법으로 합성한 n형 나노와이어의 거칠기를 조절하고 filed-effect transistor (FET) 소자를 제작하여 나노와이어의 전기적 특성변화를 확인하였다. n형 나노와이어의 거칠기를 조절하기 위하여 열처리를 통해 표면을 산화시켰고, 열처리 시간에 따른 나노와이어 FET 소자를 제작하여 I-V 특성을 관찰하였다. 이때 절연막과 나노와이어 계면 사이의 결함을 최소화 하기 위하여 나노와이어를 poly-4-vinylphenol (PVP) 고분자 절연막에 부분 삽입시켰다. 나노와이어 표면의 거칠기는 high-resolution transmission electron microscopy (HRTEM)을 통하여 확인하였으며, 전기적 특성은 Ion/Ioff ratio, 이동도, subthreshold swing, threshold voltage 값 등을 평가하였다.

  • PDF