• 제목/요약/키워드: Substrate thickness

검색결과 1,921건 처리시간 0.023초

UWB 통신용 대수 주기 보우타이 다이폴 배열 안테나 (Log-Periodic Bow-tie Dipole Array(LPBDA) Antenna for UWB Communications)

  • 여준호;이종익
    • 한국산학기술학회논문지
    • /
    • 제12권9호
    • /
    • pp.4095-4100
    • /
    • 2011
  • 본 논문에서는 UWB 통신용으로 사용할 수 있는 대수 주기 보우타이 다이폴 배열 (LPBDA) 안테나에 대하여 연구하였다. 일반적인 LPDA 안테나에서 사용되는 다이폴 소자 대신에 보우타이 형태의 다이폴 소자를 사용하였고, 보우타이 소자의 양끝으로 벌어진 각도에 따른 LPBDA 안테나의 입력 반사계수와 이득 특성을 분석하였다. 양끝으로 벌어진 각도가 증가할수록 LPBDA 안테나의 가장 낮은 동작 주파수가 저주파수 대역으로 이동하여 주파수 대역폭이 늘어나지만, 평균이득은 줄어들었다. 그러나, LPDA 안테나에 비해 이득의 변화는 적고 전후방비가 향상되었다. 표준 LPDA 안테나와 양끝으로 벌어진 각도가 13도인 LPBDA 안테나를 FR4(비유전율 4.4, 두께 0.8 mm) 기판상에 제작하였다. 측정한 이득은 3.1~10.6 GHz 대역에서 표준 LPDA 안테나는 4~6.5 dBi 범위에 있고 LPBDA 안테나는 4.2~5 dBi 범위에 있다.

900 MHz 대역 RFID 리더기용 Feedforward형 선형 전력 증폭기 설계 및 제작 (Design & Fabrication of a Feedforward Power Amplifier for 900 MHz Band RFID Readers)

  • 정병희;채규성;김창우
    • 한국항행학회논문지
    • /
    • 제8권2호
    • /
    • pp.184-190
    • /
    • 2004
  • 본 논문에서는 UHF 대역 RFID 리더기용 Feedforward형 선형전력증폭기를 설계 및 제작하였다. 전력증폭기의 선형특성을 높여주기 위하여 주 증폭기와 오차증폭기가 높은 전력이득을 갖도록 2단으로 구성하였다. 전력증폭기의 입력과 출력단의 전력 분배와 합성소자로서 각 각 3-dB와 10-dB coupler를 사용하였으며, 유전율 4.7, 두께 0.8 mm의 FR-4 기판을 이용하여 제작하였다. -11 dBm의 2-tone ($f_1$=915 MHz, $f_2$=916 MHz) 신호입력시 -18.85 dBm의 $IMD_3$ 성분을 얻고 있으며, 이는 feedforward 방식을 적용하지 않았을 때와 비교하여 27 dB 이상의 $IMD_3$성분 제거효과를 보이고 있다. 또한, 890-960 MHz의 주파수대역에서 40 dB 이상의 전력이득과 30 dBm 이상의 출력전력특성을 얻었다.

  • PDF

Diamond-Like Carbon Films Deposited by Pulsed Magnetron Sputtering System with Rotating Cathode

  • Chun, Hui-Gon;You, Yong-Zoo;Nikolay S. Sochugov;Sergey V. Rabotkin
    • 한국표면공학회지
    • /
    • 제36권4호
    • /
    • pp.296-300
    • /
    • 2003
  • Extended cylindrical magnetron sputtering system with rotating 600-mm long and 90-mm diameter graphite cathode and pulsed power supply voltage generator were developed and fabricated. Time-dependent Langmuir probe characteristics as well as carbon films thickness were measured. It was shown that ratio of ions flux to carbon atoms flux for pulsed magnetron discharge mode was equal to $\Phi_{i}$ $\Phi$sub C/ = 0.2. It did not depend on the discharge current in the range of $I_{d}$ / = 10∼60 A since both the plasma density and the film deposition rate were found approximately proportional to the discharge current. In spite of this fact carbon film structure was found to be strongly dependent on the discharge current. Grain size increased from 100 nm at $I_{d}$ = 10∼20 A to 500 nm at $I_{d}$ = 40∼60 A. To deposit fine-grained hard nanocrystalline or amorphous carbon coating current regime with $I_{d}$ = 20 A was chosen. Pulsed negative bias voltage ($\tau$= 40 ${\mu}\textrm{s}$, $U_{b}$ = 0∼10 ㎸) synchronized with magnetron discharge pulses was applied to a substrate and voltage of $U_{b}$ = 3.4 ㎸ was shown to be optimum for a hard carbon film deposition. Lower voltages were not sufficient for amorphization of a growing graphite film, while higher voltages led to excessive ion bombardment and effects of recrystalization and graphitization.

SPUDT와 양방향 변환기를 직렬 연결한 SAW 필터 (A SAW filter fabrication of the series connected SPUDT type filter with bidirectional transducer filter)

  • 유일현
    • 한국정보통신학회논문지
    • /
    • 제11권12호
    • /
    • pp.2374-2381
    • /
    • 2007
  • 표면 탄성파 필터 적절한 임피던스 정합 조건도 얻고자 단상 단방향성 및 양방향성 변환기형 필터를 제작하였다. 그리고 경사진 빗살무의 변환기 형태인 표면 탄성파 필터 제작하기 위하여 Langasite 기판위에 빗살무의 전극들을 형성시켜 모의실험을 수행하였으며, 전극재료로는 Al-Cu를 사용하였다. Langasite 기판위에 형성시킨 단상 단방향성 필터의 전극 수는 50쌍, 두께는 $5000{\AA}$으로 하였으며, 반사기 폭은 $3.6{\mu}m$이고 전극 폭과 전극과 반사기 사이의 간격은 각각 $1.2{\mu}m$로 하였다. 양방향성 필터에서는 전극 폭과 간격은 각각 $1.8{\mu}m$로 하였다. 제작한 필터의 임피던스 정합 후 주파수 특성에서 중심 주파수는 190MHz, 대역폭은 5.3MHz정도로 측정되었으며, 리플 특성은 0.3dB 이하이고, -20dB 정도의 삽입 손실이 측정되었다.

음극 전기영동법에 의해 제조된 구리/탄소 나노입자 하이브리드 복합재료의 전기적/기계적 특성 평가 (Electrical and Mechanical Properties of Cu/Carbon Nano-Particle Hybrids Composites by Cathodic Electrophoresis)

  • 이원오;이상복;최오영;이진우;변준형
    • 대한금속재료학회지
    • /
    • 제48권12호
    • /
    • pp.1130-1135
    • /
    • 2010
  • Cu/carbon nano-particle hybrids were fabricated through the cathodic electrophoretic deposition (EPD) process. CNT and CNF nano-particles were modified to give positive charges by polyethyleneimine (PEI) treatment before depositing them on the substrate. Since a Cu plate was used as an anode in the EPD process, Cu particles were also deposited along with the carbon nano-particles. Experimental observation showed the nano-hybrids constructed a novel formicary-like nano-structure which is strong and highly conductive. Utilizing the hybrids, carbon fiber composites were manufactured, and their electrical conductivity and interlaminar shear strength were measured. In addition, the deposition morphology and failure surface were examined by SEM observations. Results demonstrated that the electrical conductivities in the through-the-thickness direction and the interlaminar shear strength significantly increased by 350~2100% and 14%, respectively.

고에너지 전자빔 투사방법으로 제조된 Zr계 비정질 합금 표면복합재료의 탄도충격 성능 (Ballistic Properties of Zr-based Amorphous Alloy Surface Composites Fabricated by High-Energy Electron-Beam Irradiation)

  • 도정현;전창우;남덕현;김충년;송영범;이성학
    • 대한금속재료학회지
    • /
    • 제48권12호
    • /
    • pp.1047-1055
    • /
    • 2010
  • The objective of this study is to investigate the ballistic properties of Zr-based amorphous alloy surface composites fabricated by high-energy electron-beam irradiation. The mixture of Zr-based amorphous powders and $LiF+MgF_2$ flux powders was deposited on a pure Ti substrate, and then an electron beam irradiated this powder mixture to fabricate a one-layer surface composite. A four-layer surface composite, in which the composite layer thickness was larger than 3 mm, was also fabricated by irradiating the deposited powder mixture by an electron beam three times on the one-layer surface composite. The microstructural analysis results indicated that a small amount of fine crystalline particles were homogeneously distributed in the amorphous matrix of the surface composite layer. According to the ballistic impact test results, the surface composite layers effectively blocked a fast traveling projectile, while many cracks were formed at the composite layers, and thus the surface composite plates were not perforated. The surface composite layer containing ductile ${\beta}$ dendritic phases showed a better ballistic performance than the one without dendrites because dendritic phases hindered the propagation of shear bands or cracks.

LED 패키지 솔더 접합부의 기계적 신뢰성에 미치는 리플로우 횟수의 영향 (Effect of Multiple Reflows on the Mechanical Reliability of Solder Joint in LED Package)

  • 이영철;김광석;안지혁;윤정원;고민관;정승부
    • 대한금속재료학회지
    • /
    • 제48권11호
    • /
    • pp.1035-1040
    • /
    • 2010
  • The research efforts on GaN-based light-emitting diodes (LEDs) keep increasing due to their significant impact on the illumination industry. Surface mount technology (SMT) is widely used to mount the LED packages for practical application. In surface mount soldering both the device body and leads are intentionally heated by a reflow process. We studied on the effects of multiple reflows on microstructural variation and joint strength of the solder joints between the LED package and the substrate. In this study, Pb-free Sn-3.0Ag-0.5Cu solder and a finished pad with organic solderability preservatives (OSP) were employed. A $Cu_6Sn_5$ intermetallic compound (IMC) layer was formed during the multiple reflows, and the thickness of the IMC layerincreased with an increasing number of reflows. The shear force decreased after three reflows. From the observation of the fracture surface after a shear test, partially brittle fractures were observed after five reflows.

이온빔 증착법에 의해 제조된 철박막의 미세조직 분석 (Microstructure Analysis of Fe Thin Films Prepared by Ion Beam Deposition)

  • 김가희;양준모;안치원;서현상;강일석;황욱중
    • 대한금속재료학회지
    • /
    • 제46권7호
    • /
    • pp.458-463
    • /
    • 2008
  • High purity Fe thin films were prepared by the ion beam deposition method with $^{56}Fe^{+}$ions on the Si substrate at the room temperature. The Fe thin films were deposited at the ion energy of 50 eV and 100 eV. Microstructural properties were investigated on the atomic scale using high-resolution transmission electron microscopy (HRTEM). It was found that the Fe thin film obtained with the energy of 50 eV having an excellent corrosion resistance consists of the amorphous layer of ~15 nm in thickness and the bcc crystalline layer of about 30 nm in grain size, while the thin film obtained with the energy of 100 eV having a poor corrosion resistance consists of little amorphous layer and the defective crystalline layer. Furthermore the crystal structures and arrangements of the oxide layers formed on the Fe thin films were analyzed by processing of the HRTEM images. It was concluded that the corrosion behavior of Fe thin films relates to the surface morphology and the crystalline structure as well as the degree of purification.

Fabrication and performance evaluation of ultraviolet photodetector based on organic /inorganic heterojunction

  • Abdel-Khalek, H.;El-Samahi, M.I.;Salam, Mohamed Abd-El;El-Mahalawy, Ahmed M.
    • Current Applied Physics
    • /
    • 제18권12호
    • /
    • pp.1496-1506
    • /
    • 2018
  • Organic/inorganic ultraviolet photodetector was fabricated using thermal evaporation technique. Organic/inorganic heterojunction based on thermally evaporated copper (II) acetylacetonate thin film of thickness 200 nm deposited on an n-type silicon substrate is introduced. I-V characteristics of the fabricated heterojunction were investigated under UV illumination of intensity $65mW/cm^2$. The diode parameters such as ideality factor, n, barrier height, ${\Phi}_B$, and reverse saturation current, $I_s$, were determined using thermionic emission theory. The series resistance of the fabricated diode was determined using modified Nord's method. The estimated values of series resistance and barrier height of the diode were about $0.33K{\Omega}$ and 0.72 eV, respectively. The fabricated photodetector exhibited a responsivity and specific detectivity about 9 mA/W and $4.6{\times}10^9$ Jones, respectively. The response behavior of the fabricated photodetector was analyzed through ON-OFF switching behavior. The estimated values of rise and fall time of the present architecture under UV illumination were about 199 ms and 154 ms, respectively. Finally, enhancing the photoresponsivity of the fabricated photodetector, post-deposition plasma treatment process was employed. A remarkable modification of the device performance was noticed as a result of plasma treatment. These modifications are representative in a decrease of series resistance and an increase of photoresponsivity and specific detectivity. The process of plasma treatment achieved an increment of external quantum efficiency from 5.53% to 8.34% at -3.5 V under UV illumination.

미세 스트라이프 코팅에 미치는 슬롯 다이 헤드 마이크로 팁 길이의 영향 (Effect of the Microtip Length in a Slot-die Head on Fine Stripe Coatings)

  • 이진영;박종운
    • 반도체디스플레이기술학회지
    • /
    • 제18권4호
    • /
    • pp.69-74
    • /
    • 2019
  • The aim of this work is to investigate the effect of the microtip length in a slot-die head on coating of a fine poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) stripe. To this end, we have employed a meniscus guide with a 150-㎛-wide microtip and performed roll-to-roll slot-die coatings by varying its length between 500 ㎛ and 50 ㎛. When the microtip length is 150 ㎛ or shorter, we have observed three unexpected phenomena; 1) though the solution spreads much wider than the microtip width, yet the coated stripe width is almost the same as the microtip width, 2) the stripe width decreases, but the stripe thickness is rather increased with increasing coating speed at a fixed flow rate, 3) we obtain stripes much narrower than the microtip width at high coating speeds. It is due to the fact that 1) the meniscus is not well controlled by a short microtip, 2) the main stream of solution from the outlet is very close to the substrate and thus the distributed solution along the head lip merges with the main stream, and 3) the solution is not spread over the entire microtip end at high coating speeds, causing a tiny wobble in the meniscus. Using the 150-㎛-wide and 250-㎛-long microtip, we have fabricated 153-㎛-wide and 94-nm-thick PEDOT:PSS stripe at the maximum coating speed of 13 mm/s. To demonstrate its applicability in solution-processable organic light-emitting diodes (OLEDs), we have also fabricated an OLED device with the fine PEDOT:PSS stripe and obtained strong light emission from it.