• Title/Summary/Keyword: Strong convergence

Search Result 925, Processing Time 0.023 seconds

On Deferred Statistical Convergence of Sequences

  • Kucukaslan, Mehme;Yilmazturk, Mujde
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.2
    • /
    • pp.357-366
    • /
    • 2016
  • In this paper, deferred statistical convergence is defined by using deferred $Ces{\grave{a}}ro$ mean instead of $Ces{\grave{a}}ro$ mean in the definition of statistical convergence. The obtained method is compared with strong deferred $Ces{\grave{a}}ro$ mean and statistical convergence under some certain assumptions. Also, some inclusion theorems and examples are given.

LACUNARY STATISTICAL CONVERGENCE FOR SEQUENCE OF SETS IN INTUITIONISTIC FUZZY METRIC SPACE

  • KISI, OMER
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.1_2
    • /
    • pp.69-83
    • /
    • 2022
  • We investigate the concept of lacunary statistical convergence and lacunary strongly convergence for sequence of sets in intuitionistic fuzzy metric space (IFMS) and examine their characterization. We obtain some inclusion relation relating to these concepts. Further some necessary and sufficient conditions for equality of the sets of statistical convergence and lacunary statistical convergence for sequence of sets in IFMS have been established. The concept of strong Cesàro summability in IFMS has been defined and some results are established.

STRONG LAWS FOR WEIGHTED SUMS OF I.I.D. RANDOM VARIABLES

  • Cai, Guang-Hui
    • Communications of the Korean Mathematical Society
    • /
    • v.21 no.4
    • /
    • pp.771-778
    • /
    • 2006
  • Strong laws are established for linear statistics that are weighted sums of a random sample. We show extensions of the Marcinkiewicz-Zygmund strong laws under certain moment conditions on both the weights and the distribution. The result obtained extends and sharpens the result of Sung ([12]).

On the Strong Law of Large Numbers for Arbitrary Random Variables

  • Nam, Eun-Woo
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2002.05a
    • /
    • pp.49-54
    • /
    • 2002
  • For arbitrary random variables {$X_{n},n{\geq}1$}, the order of growth of the series. $S_{n}\;=\;{\sum}_{j=1}^n\;X_{j}$ is studied in this paper. More specifically, when the series S_{n}$ diverges almost surely, the strong law of large numbers $S_{n}/g_{n}^{-1}$($A_{n}{\psi}(A_{n}))\;{\rightarrow}\;0$ a.s. is constructed by extending the results of Petrov (1973). On the other hand, if the series $S_{n}$ converges almost surely to a random variable S, then the tail series $T_{n}\;=\;S\;-\;S_{n-1}\;=\;{\sum}_{j=n}^{\infty}\;X_{j}$ is a well-defined sequence of random variables and converges to 0 almost surely. For the almost surely convergent series $S_{n}$, a tail series strong law of large numbers $T_{n}/g_{n}^{-1}(B_{n}{\psi}^{\ast}(B_{n}^{-1}))\;{\rightarrow}\;0$ a.s., which generalizes the result of Klesov (1984), is also established by investigating the duality between the limiting behavior of partial sums and that of tail series. In particular, an example is provided showing that the current work can prevail despite the fact that previous tail series strong law of large numbers does not work.

  • PDF

Fabrication and Driving of Active-Matrix Field Emission Display

  • Song, Yoon-Ho;Jeong, Jin-Woo;Kim, Dae-Jun;Kang, Jun-Tae;Cho, Kyoung-Ik
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.483-485
    • /
    • 2007
  • The active-matrix field emission display (AMFED) was fabricated by integrating carbon nanotube emitters on a-Si thin-film transistors. Also, the tapered macro-gate was adopted for high immunity to a high anode voltage and strong electron beam focusing. The fabricated AMFED was successfully driven with a low voltage of below 15 V.

  • PDF

ON ASYMPTOTICALLY f-ROUGH STATISTICAL EQUIVALENT OF TRIPLE SEQUENCES

  • SUBRAMANIAN, N.;ESI, A.
    • Journal of applied mathematics & informatics
    • /
    • v.37 no.5_6
    • /
    • pp.459-467
    • /
    • 2019
  • In this work, via Orlicz functions, we have obtained a generalization of rough statistical convergence of asymptotically equivalent triple sequences a new non-matrix convergence method, which is intermediate between the ordinary convergence and the rough statistical convergence. We also have examined some inclusion relations related to this concept. We obtain the results are non negative real numbers with respect to the partial order on the set of real numbers.

ON STRONG CONVERGENCE THEOREMS FOR A VISCOSITY-TYPE TSENG'S EXTRAGRADIENT METHODS SOLVING QUASIMONOTONE VARIATIONAL INEQUALITIES

  • Wairojjana, Nopparat;Pholasa, Nattawut;Pakkaranang, Nuttapol
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.2
    • /
    • pp.381-403
    • /
    • 2022
  • The main goal of this research is to solve variational inequalities involving quasimonotone operators in infinite-dimensional real Hilbert spaces numerically. The main advantage of these iterative schemes is the ease with which step size rules can be designed based on an operator explanation rather than the Lipschitz constant or another line search method. The proposed iterative schemes use a monotone and non-monotone step size strategy based on mapping (operator) knowledge as a replacement for the Lipschitz constant or another line search method. The strong convergences have been demonstrated to correspond well to the proposed methods and to settle certain control specification conditions. Finally, we propose some numerical experiments to assess the effectiveness and influence of iterative methods.

WEAK AND STRONG CONVERGENCE FOR QUASI-NONEXPANSIVE MAPPINGS IN BANACH SPACES

  • Kim, Gang-Eun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.4
    • /
    • pp.799-813
    • /
    • 2012
  • In this paper, we first show that the iteration {$x_n$} defined by $x_{n+1}=P((1-{\alpha}_n)x_n +{\alpha}_nTP[{\beta}_nTx_n+(1-{\beta}_n)x_n])$ converges strongly to some fixed point of T when E is a real uniformly convex Banach space and T is a quasi-nonexpansive non-self mapping satisfying Condition A, which generalizes the result due to Shahzad [11]. Next, we show the strong convergence of the Mann iteration process with errors when E is a real uniformly convex Banach space and T is a quasi-nonexpansive self-mapping satisfying Condition A, which generalizes the result due to Senter-Dotson [10]. Finally, we show that the iteration {$x_n$} defined by $x_{n+1}={\alpha}_nSx_n+{\beta}_nT[{\alpha}^{\prime}_nSx_n+{\beta}^{\prime}_nTx_n+{\gamma}^{\prime}_n{\upsilon}_n]+{\gamma}_nu_n$ converges strongly to a common fixed point of T and S when E is a real uniformly convex Banach space and T, S are two quasi-nonexpansive self-mappings satisfying Condition D, which generalizes the result due to Ghosh-Debnath [3].

CONVERGENCE THEOREMS OF A FINITE FAMILY OF ASYMPTOTICALLY QUASI-NONEXPANSIVE TYPE MAPPINGS IN BANACH SPACES

  • Saluja, Gurucharan Singh
    • East Asian mathematical journal
    • /
    • v.27 no.1
    • /
    • pp.35-49
    • /
    • 2011
  • In this paper, we study multi-step iterative algorithm with errors and give the necessary and sufficient condition to converge to com mon fixed points for a finite family of asymptotically quasi-nonexpansive type mappings in Banach spaces. Also we have proved a strong convergence theorem to converge to common fixed points for a finite family said mappings on a nonempty compact convex subset of a uniformly convex Banach spaces. Our results extend and improve the corresponding results of [2, 4, 7, 8, 9, 10, 12, 15, 20].