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STRONG LAWS FOR WEIGHTED
SUMS OF II.D. RANDOM VARIABLES

GUANG-HUI CAI

ABSTRACT. Strong laws are established for linear statistics that
are weighted sums of a random sample. We show extensions of the
Marcinkiewicz-Zygmund strong laws under certain moment condi-
tions on both the weights and the distribution. The result obtained
extends and sharpens the result of Sung ([12)).

1. Introduction

Let {X,X;,i > 1} be a sequence of i.i.d. random variables and
{ani,1 < i < n,n > 1} be a triangular array of constants. Through-
out this paper, we assume that ¢(z) is a positive increasing function on
(0, 00) satisfying

(1) é(z) oo and ¢(Cz) = O(é(x)),¥C > 0.

We also assume that EX = 0 and E[¢(|X])] < oo.

Many useful linear statistics based on a random sample are weighted
sums of i.i.d. random variables. Examples include least-squares esti-
mators, nonparametric regression function estimators and jackknife es-
timates, among others. In this respect, studies of strong laws for these
weighted sums have demonstrated significant progress in probability the-
ory with applications in mathematical statistics. Let {X, X;,7 > 1} be
a sequence of i.i.d. random variables and {an;,1 < i < n,n > 1} be a
triangular array of constants. The almost sure (a.s.) limiting behavior
of weighted sums ) . ; a,;X; was studied by many authors (see, Sung
[12], Sung [11], Bai and Cheng [1], Choi and Sung [2], Cuzick [4], Li et
al, 1995, Wu [3]). Recently Sung [12] proved the following strong laws
of large numbers (see Theorem A and Theorem B).
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THEOREM A. Let {X, X;,1 > 1} be a sequence of i.i.d. random vari-
ables satisfying EX = 0 and E[¢(]X|)] < co. Assume that the inverse
function (x) of qS(m) satisfies

L o

Let {ani,1 <i<n,n > 1} be a triangular array of constants such that
() maxi<icnani = O(gti),
(ii) maxi<j<n ¢—](7—) P a2, = O(%) for some o > 0. Then
n

E aniXi — 0 a.s.
i=1

THEOREM B. Let {X,X;,¢ > 1} be a sequence of i.id. random
variables satisfying EX = 0, EX? < oo and E[¢(|X])] < oo. Let
{ani,1 < i < n,n > 1} be a triangular array of constants such that

(i) maxi <i<n |ani| = O(5(5),

(i1) S°7 ; a2; = O(;k) for some a > 0. Then

n
Z am-Xi — 0 a.s.

i=1

As for negatively associated (NA) random variables, Joag (7] gave the
following definition.

DEFINITIONS 2.2 ([7]). A finite family of random variables {X;,1 <
i < n} is said to be negatively associated (NA) if for every pair of disjoint
subsets T} and T% of {1,2,...,n}, we have

Cov(f1(Xs,1 € Th), f2(Xj,5 € Tp)) <0,

whenever fi; and fs are coordinatewise increasing and the covariance
exists. An infinite family is negatively associated if every finite subfamily
is negatively associated.

The main purpose of this paper is to establish the Marcinkiewicz-
Zygmund strong laws for linear statistics of i.i.d. sequences and NA
sequences of random variables. The results obtained (see Theorem 2.1,
Theorem 2.2, Corollary 2.1 and Corollary 2.2) extends and sharpens the
result of Sung [12].
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2. The Marcinkiewicz-Zygmund strong laws

Throughout this paper, C will represent a positive constant though
its value may change from one appearance to the next, and a,, = O(by,)
will mean a, < Cb,, and a, < b, will mean a,, = O(b,). Let ¢(z) be
the inverse function of ¢(z). Since ¢(x) 1 oo, it follows that ¥ (z) T oco.
For easy notation, we let ¢(0) = 0 and ¥(0) = 0.

In order to prove our results, we need the following lemmas and
the concept of complete convergence. As for complete convergence, let
{X,Xn,n > 1} be a sequence of independent identically distribution
random variables (i.i.d) random variables and denote S, = > ;' ; X;.
The Hsu-Robbins-Erdos law of large numbers (Hsu and Robbins [6];
Erdos [5]) states that

Ve > O,ZP(lSni > en) < 00

n=1

is equivalent to EX =0 and EX? < co.

This is a fundamental theorem in probability theory and has been
intensively investigated by many authors in the past decades. We can see
in Petrov [8], Chow [3] and Stout [10]. There have been many extensions
in various directions for Hsu-Robbins-Erdos law of large numbers.

LEMMA 2.1 (PETROV (8]). Let {X;,i > 1} be a sequence of i.id.
random variables, EX; = 0, E|X;[P < oo for some p > 2 and for every
i > 1. Then there exists C = C(p), such that

1<k<n

k n n
E max | Y XiP < ¢ EIXilP+ (Y EXP?}.
i=1 i=1 =1

LEMMA 2.2 (SUNG [12]). Assume that the inverse function ¢ (z) of
¢(z) satisfies (2). If E[¢p(|X|)] < oo, then the followings hold.

6) 3 A EIXI(X| > vm)) < oo,
(1) i ASEX2(X] > 42(n)) < co.

LEMMA 2.3. Assume that the inverse function ¢ (z) of ¢(z) satisfies

"1
(3) Y(n) Y —= = O(n).
250
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o0
If E[¢(|X|)] < oo, then 21 T EIXII(1X| > ¢(n)) < oc.
PRrROOF. The proof of Lemma 2.3 is similar to the proof of Lemma
2.2. O

LEMMA 2.4 (SHAO [9]). Let {X;,i > 1} be a sequence of negatively
associated mean zero random variables with E|X;|P < co. Then for any
p > 2, there exists C=C(p) such that

k n’ n
P < 2\ & 1P
E max | Xil _C{(;EXJ2 +;EIXZ! }

THEOREM 2.1. Let {X,X;,i > 1} be a sequence of i.i.d. random
variables satisfying EX = 0, EX? < 0o and E[¢(|X|)] < oo. Let Tp, =

k3
> aniXi,n > 1. Assume that the inverse function ¥(z) of ¢(z) satisfies

=1
i 1

Let {an;,1 <i<n,n> 1} be a triangular array of constants such that

() nla'X1<'L<n Ianz| - (1/,%1)),
(i) 37, a2, = O(log™*~*n) for some a > 0. Then
(4) Ve > 0, Zn max |T|>e)<

J
PROOF. Vi > 1, define X\ = X;I(1X;| < ¥(n)), T” = 3" (ans X"

i=1
—Ea,m-Xi(n)), then Ve > 0,

P( max |T;] > ¢)
1<5<

(n)
< )
< Pluax 1%, > v(n) + P(max (1)
J

— y (™
(5) > &— max | Z:Easz .
First we show that
(6) max |2EamX(n)| —0, as n — oo.

1<j<n ' 4
P
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By Lemma 2.3 and Kronecker Lemma, then

1 — .
(7) W;EIXII(IXI > (i) — 0

By EX =0, maxi<i<n |ani| = O(¢ ),. (7) and 9(n) T oo, when n — oo,

then

i)

x ()
1<]<n ax | ZEam |

1<j<n
< ) ElanXi|I(1Xs| > ()
=1
= 3 Janl BIX (X > $(n))
=1
1 n
< o) ;E|X|[(|X| > 1p(n))
(8) < ﬁ ST EIX|I(X] > () — 0
=1

From (8), then (6) is true.
From (5) and (6), it follows that for n large enough

n

P(max |Tj| > ¢) < Z (151 > p(m) + P(masx \T(")|> 5)-

Hence we need only to prove that

I=>"n"1Y " P(X;] > $(n)) < oo,
n= j=1

[e 0]

(9) 1] =: Zn 1P(max ITn)|> )<oo



776 Guang-hui Cai

From the fact that E[¢(|X])] < oo, it follows easily that

Z P(IX] >4 (n))

Z (1X] > (n))

ZP(qﬁ(le ) >mn)
=1
(10) <<E[ ¢(1X])] < oo.

By Lemma 2.1 and EX? < o0, it follows that

[e o]
II SC’Zn 'E max T

1<j<n
00 n
<OYn Y Blang X
n=1 j=1

=CY n1> al EXPI(X| < ()

n=1 j=1
o0 n
~1 2
< E n E U
n=1 j=1

o0
(11) < Zn“l log™ "% n < oo.

n=1

Now we complete the prove of Theorem 2.1.

COROLLARY 2.1. Under the conditions of Theorem 2.1, then

lim T,,=0 a.s.
n-—00

PROOF. By (4), we have

o0
1 '
oo > Zn P(lrgjagcnlﬂl > €)

n=1
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oo 2011

= _1P .
S5 P 1> 0

By Borel-Cantelli Lemma, we have
P( max |Tj| > ¢,1.0.) =0.

1<5<2¢
Hence
lim max [Tj|=0 a.s.
i—001<j<28
and using
‘max [T < max [T,
2i-1<n<2i 1<5<2t
then
lim |7,| < lim max |T,| < lim max |T;|=0 a.s.
n—00 1—00 2i-1<n<2? i—00 1<5<2¢

Then we have

lim 7, =0 a.s.
n—

Now we complete the prove of Corollary 2.1. |
THEOREM 2.2. Let {X,X;,i > 1} be a sequence of NA random
variables satisfying EX = 0, EX? < co and E[¢(|X|)] < oo. Let T, =

n
> an; X;,n > 1. Assume that the inverse function () of ¢(x) satisfies

i=1

wo ﬁj = O(n).

Let {ani,1 <i<mn,n>1} be a triangular array of constants such that
(i) maxi<i<n lani| = O(577);
(i) 2%, a2, = O(log™'=%n) for some o > 0. Then

i=1“ni

-1 )
(12) Ve > O,;n P(lré% Ty > €) < oo.

PRrROOF. The proof of Theorem 2.2 is similar to the proof of Theorem
2.1. O

COROLLARY 2.2. Under the conditions of Theorem 2.2, then

lim 7,, =0 a.s.
n—od
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PROOF. The proof of Corollary 2.2 is similar to the proof of Corollary
2.1. O

REMARK. Theorem 2.2 and Corollary 2.2 generalize the results of
Sung [12] to NA sequences.
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