PMOSFETs were studied on the effect of Hot-Carrier induced drain leakage current (Gate-Induced-Drain-Leakage). The result turned out that change in Vgl(drain voltage where 1pA/$\mu$m of drain leadage current flows) was largest in the Channel-Hot-Hole(CHH) injection condition and next was in dynamic stress and was smallest in electron trapping (Igmax) condition under various stress conditions. It was analyzed that if electron trapping occurrs in the overlap region of gate and drain(G/D), it reduces GIDL current due to increment of flat-band voltage(Vfb) and if CHH is injected, interface states(Nit) were generated and it increases GIDL current due to band-to-defect-tunneling(BTDT). Especially, under dynamic stress it was confirmed that increase in GIDL current will be high when electron injection was small and CHH injection was large. Therefore as applying to real circuit, low drain voltage GIDL(BTDT) was enhaced as large as CHH Region under various operating voltage, and it will affect the reliablity of the circuit.
본 논문은 금속 산화물 반도체의 산화막 두께, 채널 폭과 길이에 따른 실리콘 산화막의 신뢰성 특성을 연구하였다. 스트레스전류와 전이전류는 스트레스 전압에 의하여 발생된다. 스트레스 유기 누설전류는 스트레스 전압 인가 동안과 인가 후의 실리콘 산화막에 나타난다. 이때 저레벨 스트레스 전압에 의한 저레벨 누설전류는 저전압 인가 동안과 인가 후의 얇은 실리콘 산화막에서 발생한다. 저레벨 누설전류는 각각 스트레스 바이어스 조건에 따라 스트레스전류와 전이전류를 측정하였다. 스트레스 채널전류는 일정한 게이트 전압이 인가동안 측정하였고 전이 채널전류는 일정한 게이트 전압을 인가한 후에 측정하였다. 본 연구는 소자의 구동 동작 신뢰성을 위하여 저레벨 스트레스 바이어스 전압에 의한 스트레스 전류와 전이전류가 발생되어 이러한 저레벨 누설전류를 조사하였다.
금속 유도 측면 결정화 (Metal-Induced Lateral Crystallization; MILC)에 의해 저온다결정 실리콘 박막트랜지스터를 형성할 때 Ni박막을 게이트와 소오스/드레인간 경계로부터 거리를 달리하여 형성한 뒤 결정화시킴으로써 소오스와 드레인으로부터 결정화가 진행되어 서로 만나는 경계 면을 채널 내부 외부에 인위적으로 위치시킬 수 있었고 이들의 전기적 특성비교를 통하여 MILC경계가 트랜지스터 특성에 미치는 영향을 고찰할 수 있었다. MILC 경계를 채널 내부로부터 제거시킴으로써 On Current, Subthreshold slope 특성을 향상시킬 수 있었고 누설전류 특성도 크게 향상시킬 수 있었다. 채널 내부에 MILC 경계가 존재할 경우 전기적 스트레스를 인가함에 따라 누설전류의 양이 감소하였고, 전체 감소량은 채널 폭이 넓을수록 증가하였고 채널길이에는 무관하였다.
LPCVD 방법으로 실리콘 산화막 두께 10nm에서 80nm인 MOS를 제작하였다. 그리고 스트레스 전계 산화막 전류의 두께 의존성을 조사하였다. 산화막 전류는 스트레스 전류와 전이전류로 구성되어 있음을 보여 주었다. 스트레스 전류는 스트레스 유기 누설전류와 직류전류로 이루어졌으며 산화막을 통하는 트립 어시스트 터널링으로 행해진다. 전이전류는 계면에서 트랩의 터널링 충전과 방전에 의해 이루어진다. 스트레스 전류는 산화막 전류의 두계 한계를 평가하는데 이용되고 전이전류는 기억소자에서 데이터 유지에 사용된다.
본 논문에서는 4세대 VNAND 공정으로 만들어진 Peri 소자의 스트레스 영역 별 time-dependent dielectric breakdown(TDDB) 열화 메커니즘을 분석하고, 기존의 수명 예측 모델보다 더 넓은 신뢰성 평가 영역에서 신속성과 정확성을 향상시킬 수 있는 수명 예측 보완 모델을 제시하였다. SiON 절연층 nMOSFET에서 5개의 Vstr 조건에 대해 각 10번의 constant voltage stress(CVS) 측정 후, stress-induced leakage current(SILC) 분석을 통해 저전계 영역에서의 전계 기반 열화 메커니즘과 고전계 영역에서의 전류 기반 열화 메커니즘이 주요함을 확인하였다. 이후 Weibull 분포로부터 time-to-failure(TF)를 추출하여 기존의 E-모델과 1/E-모델의 수명 예측 한계점을 확인하였고, 각 모델의 결합 분리 열화 상수(k)를 추출 및 결합하여 전계 및 전류 기반의 열화 메커니즘을 모두 포함하는 병렬식 상호보완 모델을 제시하였다. 최종적으로 실측한 TDDB 데이터의 수명을 예측할 시, 기존의 E-모델과 1/E-모델에 비해 넓은 전계 영역에서 각 메커니즘을 모두 반영하여 높은 스트레스에서 신속한 신뢰성 평가로 더 정확한 수명을 예측할 수 있음을 확인하였다.
本 論文은 기존 LOCOS工程의 張點을 모두 겸비한 側面璧 SWAMI 技術에 대한 새로운 構造를 提示한다. 새로운 SWAMI공정은 순수 窒化膜 壓力과 體積 膨腸에 기인한 壓力을 크게 줄이기 위해서 側面璧 주위에 얇은 질화막과 反應性이온 飾刻으로 기울어진 실리콘 측면벽을 結合시켰따. 製作된 結果에 의하면, 缺陷이 없는 완전히 새부리 모양이 形成되지 않는 局地的 酸化 공정은 기울어진 面의 異方性 산화 隔離에 의해 實現시킬 수 있었다. 추가적인 마스크 段階는 要求되지 않는다. 이 工程에서 PN 다이오드의 漏泄電流는 기존 LOCOS 공정 보다 減少되었다. 한편 가장자리 部位는 漏泄電流 密度에서 평편한 接合 부위 보다 높게 分析되었다.
반도체 집적 공정의 발달로 차세대 소자용으로 30 A 이하의 극 박막 Si02 절연막이 요구되고 있으며, 현재 제품으로 50-70 A 두께의 절연막을 사용한 것이 발표되고 있다. 절연막의 두께가 앓아질수록 많은 문제가 발생할 수 있는데 그 예로 절연막의 breakdo때둥에 의한 신뢰성 특성의 악화, 절연막올 통한 direct tunneling leakage current, boron풍의 dopant 침투로 인한 소자 특성 ( (Threshold Voltage)의 불안, 전기적 stress하에서의 leakage current증가와 c charge-trap 및 피terface s쩌.te의 생성으로 인한 소자 특성의 변화 둥으로 요약 된다. 절연막의 특성올 개선하기 위해 여러 가지 새로운 공정들이 제안되었다. 그 예로, Nitrogen올 Si/Si02 계면에 doping하여 절연막의 특성을 개선하는 방법 으로 고온 열처 리 를 NH3, N20, NO 분위 기 에서 실시 하거 나, polysilicon 또는 s silicon 기판에 nitrogen올 이온 주입하여 열처리 하는 방법, 그리고 Plasma분 위기에서 Nitrogen 함유 Gas를 이용하여 nitrogen을 doping시키는 방법 둥이 연구되고 있다. 또한 Oxide cleaning 후 상온에서 성장되는 oxide를 최소화 하여 절연막의 특성올 개선하기 위하여 LOAD-LOCK을 이용하는 방법, C뼈피ng 공정의 개선올 통한 contamination 감소와 silicon surface roughness 감소 로 oxide 신뢰성올 개선하는 방법 둥이 있다. 구조적 인 측면 에 서 는 Polysilicon 의 g없n size 를 최 적 화하여 OxideIPolysilicon 의 계면 특성올 개선하는 연구와 Isolation및 Gate ETCH공정이 절연막의 특성에 미 치 는 영 향도 많이 연구되 고 있다 .. Plasma damage 가 Oxide 에 미 치 는 효과 를 제어하는 방법과 Deuterium열처리 퉁올 이용하여 Hot electron Stress하에서 의 MOS 소자의 Si/Si02 계면의 신뢰성을 개선하고 있다. 또한 극 박막 전연막의 신뢰성 특성올 통계적 분석올 통하여 사용 가능한 수명 올 예 측 하는 방법 과 Direct Tunneling Leakage current 를 고려 한 허 용 가농 한 동작 전 압 예측 및 Stress Induced Leakage Current 둥에 관해서 도 최 근 활발 한 연구가 진행되고 있다.
AlGaAs/GaAs HBTs are developed well enough to be commercialized as an active device in optical transmission system, but there remains the unanswered questions about reliability. In this paper we applied the reverse constant current stress at the high voltage in avalanche region for a long time to find out a new degradation mechanism of junctrion I-V. The unction off-set voltage at which the current vanishes to zero was shifted to the negative direction of applied bias due to the increment of leakage current as the stress time increases. It was identified that the degradation was induced by the hot carriers which were generated at space charge region and trapped at the interface between GaAs base and the passivation nitride enhancing the electric field across the nesa edge.
본 논문은 p-MOS 트랜지스터에서 음 바이어스 온도 불안정(NBTI) 전류 스트레스 인가에 의해서 드레인 전류, 문턱 전압, 문턱 전압아래 기울기, 게이트유기 드레인 누설(GIDL) 전류가 변화하는 열화특성을 측정하고 분석하였다. 스트레스 시간, 온도와 전계 의존에 연관된 열화 크기는 실리콘/산화막 계면에서 계면 트랩 생성에 좌우된다는 것으로 나타났다. 문턱 전압의 변화와 문턱 전압아래 기울기 사이에 상관관계로부터, 소자 열화에 대한 중요한 메카니즘이 계면 상태의 생성과 관련이 있다는 것을 분석하였다. GIDL 측정 결과로부터, NBTI 스트레스에 기인한 계면상태에서 전자 정공쌍의 생성이 GIDL 전류의 증가를 가져온다. 그러므로 초박막 게이트 산화막 소자에서 NBTI 스트레스 후에 GIDL 전류 증가를 고려하여 야만 한다. 또한, 신뢰성 특성과 dc 소자 성능을 동시에 고려함이 초고집적 CMOSFET의 스트레스 공학기술에서 상당히 필수불가결하다.
본 논문은 게이트 채널 길이 0.13 [${\mu}m$]의 p-MOS 트랜지스터에서 음 바이어스 온도 불안정(NBTI) 전류 스트레스 인가에 의한 게이트유기 드레인 누설(GIDL) 전류를 측정 분석하였다. NBTI 스트레스에 의한 문턱전압의 변화와 문턱전압아래 기울기와 드레인 전류 사이에 상관관계로부터, 소자의 특성 변화의 결과로 열화에 대한 중요한 메카니즘이 계면 상태의 생성과 관련이 있다는 것을 분석하였다. GIDL 전류의 측정 결과로부터, NBTI 스트레스에 기인한 계면상태에서 전자-정공 쌍의 생성이 GIDL 전류의 증가의 결과를 도출하였다. 이런 결과로 부터, 초박막 게이트 산화막 소자에서 NBTI 스트레스 후에 증가된 GIDL 전류를 고려해야만 한다. 또한, 동시에 신뢰성 특성과 직류 소자 성능의 고려가 나노 크기의 CMOS 통신회로 설계의 스트레스 파라미터들에서 반드시 있어야 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.