• Title/Summary/Keyword: Stirling numbers of the second kind

Search Result 29, Processing Time 0.022 seconds

Bernoulli and Euler Polynomials in Two Variables

  • Claudio Pita-Ruiz
    • Kyungpook Mathematical Journal
    • /
    • v.64 no.1
    • /
    • pp.133-159
    • /
    • 2024
  • In a previous work we studied generalized Stirling numbers of the second kind S(a2,b2,p2)a1,b1 (p1, k), where a1, a2, b1, b2 are given complex numbers, a1, a2 ≠ 0, and p1, p2 are non-negative integers given. In this work we use these generalized Stirling numbers to define Bernoulli polynomials in two variables Bp1,p2 (x1, x2), and Euler polynomials in two variables Ep1p2 (x1, x2). By using results for S(1,x2,p2)1,x1 (p1, k), we obtain generalizations, to the bivariate case, of some well-known properties from the standard case, as addition formulas, difference equations and sums of powers. We obtain some identities for bivariate Bernoulli and Euler polynomials, and some generalizations, to the bivariate case, of several known identities for Bernoulli and Euler numbers and polynomials of the standard case.

LU-FACTORIZATION OF THE SQUARE-TYPE MATRIX OF THE STIRLING MATRIX

  • Ji-Hwan Jung
    • East Asian mathematical journal
    • /
    • v.39 no.5
    • /
    • pp.523-528
    • /
    • 2023
  • Let Sn = [S(i, j)]1≤i,j≤n and S*n = [S(i + j, j)]1≤i,j≤n where S(i, j) is the Stirling number of the second kind. Choi and Jo [On the determinants of the square-type Stirling matrix and Bell matrix, Int. J. Math. Math. Sci. 2021] obtained the diagonal entries of matrix U in the LU-factorization of S*n for calculating the determinant of S*n, where L = Sn. In this paper, we compute the all entries of U in the LU-factorization of matrix S*n. This implies the identities related to Stirling numbers of both kinds.

ON THE (p, q)-POLY-KOROBOV POLYNOMIALS AND RELATED POLYNOMIALS

  • KURT, BURAK;KURT, VELI
    • Journal of applied mathematics & informatics
    • /
    • v.39 no.1_2
    • /
    • pp.45-56
    • /
    • 2021
  • D.S. Kim et al. [9] considered some identities and relations for Korobov type numbers and polynomials. In this work, we investigate the degenerate Korobov type Changhee polynomials and the (p,q)-poly-Korobov polynomials. We give a generalization of the Korobov type Changhee polynomials and the (p,q) poly-Korobov polynomials. We prove some properties and identities and explicit relations for these polynomials.

UNIFIED APOSTOL-KOROBOV TYPE POLYNOMIALS AND RELATED POLYNOMIALS

  • Kurt, Burak
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.2
    • /
    • pp.315-326
    • /
    • 2021
  • Korobov type polynomials are introduced and extensively investigated many mathematicians ([1, 8-10, 12-14]). In this work, we define unified Apostol Korobov type polynomials and give some recurrences relations for these polynomials. Further, we consider the q-poly Korobov polynomials and the q-poly-Korobov type Changhee polynomials. We give some explicit relations and identities above mentioned functions.

A NOTE ON THE GENERALIZED BERNOULLI POLYNOMIALS WITH (p, q)-POLYLOGARITHM FUNCTION

  • JUNG, N.S.
    • Journal of applied mathematics & informatics
    • /
    • v.38 no.1_2
    • /
    • pp.145-157
    • /
    • 2020
  • In this article, we define a generating function of the generalized (p, q)-poly-Bernoulli polynomials with variable a by using the polylogarithm function. From the definition, we derive some properties that is concerned with other numbers and polynomials. Furthermore, we construct a special functions and give some symmetric identities involving the generalized (p, q)-poly-Bernoulli polynomials and power sums of the first integers.

HIGHER ORDER APOSTOL-TYPE POLY-GENOCCHI POLYNOMIALS WITH PARAMETERS a, b AND c

  • Corcino, Cristina B.;Corcino, Roberto B.
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.3
    • /
    • pp.423-445
    • /
    • 2021
  • In this paper, a new form of poly-Genocchi polynomials is defined by means of polylogarithm, namely, the Apostol-type poly-Genocchi polynomials of higher order with parameters a, b and c. Several properties of these polynomials are established including some recurrence relations and explicit formulas, which are used to express these higher order Apostol-type poly-Genocchi polynomials in terms of Stirling numbers of the second kind, Apostol-type Bernoulli and Frobenius polynomials of higher order. Moreover, certain differential identity is obtained that leads this new form of poly-Genocchi polynomials to be classified as Appell polynomials and, consequently, draw more properties using some theorems on Appell polynomials. Furthermore, a symmetrized generalization of this new form of poly-Genocchi polynomials that possesses a double generating function is introduced. Finally, the type 2 Apostolpoly-Genocchi polynomials with parameters a, b and c are defined using the concept of polyexponential function and several identities are derived, two of which show the connections of these polynomials with Stirling numbers of the first kind and the type 2 Apostol-type poly-Bernoulli polynomials.

q-ADDITION THEOREMS FOR THE q-APPELL POLYNOMIALS AND THE ASSOCIATED CLASSES OF q-POLYNOMIALS EXPANSIONS

  • Sadjang, Patrick Njionou
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.5
    • /
    • pp.1179-1192
    • /
    • 2018
  • Several addition formulas for a general class of q-Appell sequences are proved. The q-addition formulas, which are derived, involved not only the generalized q-Bernoulli, the generalized q-Euler and the generalized q-Genocchi polynomials, but also the q-Stirling numbers of the second kind and several general families of hypergeometric polynomials. Some q-umbral calculus generalizations of the addition formulas are also investigated.

A NOTE ON q-ANALOGUE OF POLY-EULER POLYNOMIALS AND ARAKAWA-KANEKO TYPE ZETA FUNCTION

  • KIM, YOUNG ROK;LEE, HUI YOUNG;KIM, AHYUN
    • Journal of applied mathematics & informatics
    • /
    • v.38 no.5_6
    • /
    • pp.611-623
    • /
    • 2020
  • In this paper, we define a q-analogue of the poly-Euler numbers and polynomials which is generalization of the poly Euler numbers and polynomials including q-analogue of polylogarithm function. We also give the relations between generalized poly-Euler polynomials. Furthermore, we introduce zeta fuctions of Arakawa-Kaneko type and talk their properties and the relation with q-analogue of poly-Euler polynomials.

GENERATING FUNCTIONS FOR LEGENDRE-BASED POLY-BERNOULLI NUMBERS AND POLYNOMIALS

  • Khan, N.U.;Usman, Talha;Aman, Mohd
    • Honam Mathematical Journal
    • /
    • v.39 no.2
    • /
    • pp.217-231
    • /
    • 2017
  • In this paper, we introduce a generating function for a Legendre-based poly-Bernoulli polynomials and give some identities of these polynomials related to the Stirling numbers of the second kind. By making use of the generating function method and some functional equations mentioned in the paper, we conduct a further investigation in order to obtain some implicit summation formulae for the Legendre-based poly-Bernoulli numbers and polynomials.