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A NOTE ON THE GENERALIZED BERNOULLI

POLYNOMIALS WITH (p, q)-POLYLOGARITHM FUNCTION†

N.S. JUNG

Abstract. In this article, we define a generating function of the gener-

alized (p, q)-poly-Bernoulli polynomials with variable a by using the poly-
logarithm function. From the definition, we derive some properties that

is concerned with other numbers and polynomials. Furthermore, we con-
struct a special functions and give some symmetric identities involving the

generalized (p, q)-poly-Bernoulli polynomials and power sums of the first

integers.
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1. Introduction

Throughout this paper, we use the following standard notations. N = {1,
2, 3, . . . } denotes the set of natural numbers, Z+ denotes the set of nonnegative
integers, Z denotes the set of integers, and C denotes the set of complex numbers,
respectively.

The ordinary Bernoulli polynomials Bn(x) are defined by the generating func-
tions

t

et − 1
ext =

∞∑
n=0

Bn(x)
tn

n!
(see [1,2,4,5]).

When x = 0, B
(k)
n,q = B

(k)
n,q(0) are called poly-Bernoulli numbers.

In [4], we introduced a generalization of the ordinary Bernoulli polynomials
Bn(x; a) with variable a that are defined by

Lik(1− e−t)

eat − 1
ext =

∞∑
n=0

B(k)
n (x; a)

tn

n!
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where

Lik(x) =

∞∑
n=1

xn

nk
, (k ∈ Z) (see [1,2,4,5,6,7])

is polylogarithm function. When a = 1, it is equal to the poly-Bernoulli poly-
nomials. If k = 1, then we have Li1(x) = −log(1 − x) and Li1(1 − e−t) = t.
Using the result of polylogarithm function, we observe that the poly-Bernoulli
polynomials is identical to the ordinary Bernoulli polynomials Bn(x).

For n ∈ C, the (p, q)-integer [n]p,q is defined as follows

[n]p,q =
pn − qn

p− q
.

Note that limp→1[n]p,q = [n]q and limq→1[n]q = n.
From the definition of the (p, q)-integer, the (p, q)-analogue of the polyloga-

rithm function Lik,p,q is given by

Lik,p,q(x) =

∞∑
n=1

xn

[n]kp,q
, (k ∈ Z) (see [6]). (1.1)

The Stirling numbers of the second kind S2(n,m) are defined as below

xn =

n∑
m=0

S2(n,m)(x)m,

where (x)n = x(x− 1)(x− 2) · · · (x− n + 1) is falling factorial. The generating
function of the Stirling numbers of the second kind is given by

∞∑
n=m

S2(n,m)
tn

n!
=

(et − 1)m

m!
(see [3,4,5,8]). (1.2)

In this paper, by using the (p, q)-polylogarithm function, we define a general-
ized (p, q)-poly-Bernoulli polynomials with variable a. We show that is related
with the other numbers and polynomials. We also find some identities that are
concerned with the Stirling numbers and the weighted Stirling numbers of the
second kind. Moreover, by using special functions and power sums of first inte-
gers, we derive some symmetric properties of the generalized (p, q)-poly-Bernoulli
numbers and polynomials.

2. Generalized of (p, q)-poly-Bernoulli polynomials with variable a

In this section, by using the Equation (1.2), we construct a generalized (p, q)-

poly-Bernoulli polynomials B
(k)
n,p,q(x; a) with variable a by the following gener-

ating functions. We investigate some properties of the polynomials and find
several relations that are connected with other polynomials.
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Definition 2.1. For n ∈ Z+, k ∈ Z and 0 < q < p ≤ 1, we define a generalized
(p, q)-poly-Bernoulli polynomials with variable a by

Lik,p,q(1− e−t)

eat − 1
ext =

∞∑
n=0

B(k)
n,p,q(x; a)

tn

n!
(2.1)

where

Lik,p,q(t) =

∞∑
n=1

tn

[n]kp,q

is the k-th (p, q)-polylogarithm function. When x = 0, B
(k)
n,p,q(0; a) = B

(k)
n,p,q(a)

are called the generalized (p, q)-poly-Bernoulli numbers with variable a.

From the Equation (2.1), we have a relation between the generalized poly-
Bernoulli numbers and polynomials.

Theorem 2.2. Let n ≥ 0, m ≥ 1 and k ∈ Z. We have

B(k)
n,p,q(mx; a) =

n∑
l=0

(
n

l

)
mn−1B

(k)
l,p,q(a)xn−l.

Proof. For n ≥ 0, m ≥ 1 and k ∈ Z, we get

∞∑
n=0

B(k)
n,p,q(mx; a)

tn

n!
=

Lik,p,q(1− e−t)

eat − 1
emxt

=

∞∑
n=0

(
n∑

l=0

(
n

l

)
mn−1B

(k)
l,p,q(a)xn−l

)
tn

n!
.

Thus, we obtain the above result. �

When m = 1, it satisfies

B(k)
n,p,q(x; a) =

n∑
l=0

(
n

l

)
B

(k)
l,p,q(a)xn−l.

Theorem 2.3. Let n ∈ Z+ and k ∈ Z. Then we get

B(k)
n,p,q(x + y; a) =

n∑
l=0

(
n

l

)
B

(k)
l,p,q(x; a)yn−l. (2.2)
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Proof. For n ∈ Z+, k ∈ Z, we have

∞∑
n=0

B(k)
n,p,q(x + y; a)

tn

n!
=

Lik,p,q(1− e−t)

eat − 1
e(x+y)t

=

∞∑
n=0

B(k)
n,p,q(x; a)

tn

n!

∞∑
n=0

yn
tn

n!

=

∞∑
n=0

(
n∑

l=0

(
n

l

)
B

(k)
l,p,q(x; a)yn−l

)
tn

n!
.

Therefore, we have the obvious result. �

If mx is replaced x + y in Theorem 2.3, the next theorem is obtained.

Corollary 2.4. For n > 0, m ≥ 1 and k ∈ Z, we get

B(k)
n,p,q(mx; a) =

n∑
l=0

(
n

l

)
(m− 1)n−1B

(k)
l,p,q(x; a)xn−l.

Proof. Let n > 0, m ≥ 1 and k ∈ Z. We derive

∞∑
n=0

B(k)
n,p,q(mx; a)

tn

n!
=

Lik,p,q(1− e−t)

eat − 1
emxt

=

∞∑
n=0

B(k)
n,p,q(x; a)

tn

n!

∞∑
n=0

((m− 1)x)
n tn

n!

=

∞∑
n=0

(
n∑

l=0

(
n

l

)
(m− 1)n−1B

(k)
l,p,q(x; a)xn−l

)
tn

n!
.

�

From the Equation (2.2), we find a recurrence relation as below.

Theorem 2.5. Let n ∈ Z+ and k ∈ Z. We obtain

B(k)
n,p,q(x + 1; a)−B(k)

n,p,q(x; a) =

n−1∑
l=0

(
n

l

)
B

(k)
l,p,q(x; a).
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Proof. For n ∈ Z+, k ∈ Z, we get

∞∑
n=0

B(k)
n,p,q(x + 1; a)

tn

n!
−
∞∑

n=0

B(k)
n,p,q(x; a)

tn

n!

=
Lik,p,q(1− e−t)

eat − 1
ext(et − 1)

=

∞∑
n=0

B(k)
n,p,q(x; a)

tn

n!

∞∑
n=1

tn

n!

=

∞∑
n=1

n−1∑
l=0

(
n

l

)
B

(k)
l,p,q(x; a)

tn

n!
.

Comparing the coefficient on both sides, we have the above theorem. �

By using the binomials series and the definition of polylogarithm function, we
derive next result.

Theorem 2.6. For n ∈ Z+ and k ∈ Z, we have

B(k)
n,p,q(x; a) =

∞∑
l=0

l∑
m=0

m+1∑
r=0

(
m + 1

r

)
(−1)r+1(x− r + al − am))n

[m + 1]np,q
.

Proof. Let n ∈ Z+, k ∈ Z. From the Equation (1.4), we obtain

Lik,p,q(1− e−t)

eat − 1
ext =

(
−
∞∑
l=0

elat

)( ∞∑
n=0

(1− e−t)n+1

[n + 1]kp,q

)
ext

= −
∞∑
l=0

l∑
m=0

e(l−m)at (1− e−t)m+1

[m + 1]kp,q
ext

=

(
−
∞∑
l=0

l∑
m=0

e(l−m)at

[m + 1]kp,q

)(
m+1∑
r=0

(
m + 1

r

)
(−1)re(x−r)t

)

=

∞∑
n=0

∞∑
l=0

l∑
m=0

m+1∑
r=0

(
m + 1

r

)
(−1)r+1(x− r + al − am)n

[m + 1]kp,q

tn

n!

So, we get the desired result.

B(k)
n,p,q(x; a) =

∞∑
l=0

l∑
m=0

m+1∑
r=0

(
m + 1

r

)
(−1)r+1(x− r + al − am)n

[m + 1]kp,q
.

�

In similar method, we get result that is related with the generalized classical
Bernoulli polynomials with variable a.
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Theorem 2.7. Let n ∈ Z+ and k ∈ Z. Then we have

B(k)
n,p,q(x; a) =

∞∑
l=0

1

[l + 1]kp,q

l+1∑
r=0

(−1)r
(
l + 1

r

)
Bn+1(x− r; a)

n + 1
.

Proof. For n ∈ Z+ and k ∈ Z,

Lik,p,q(1− e−t)

eat − 1
ext =

∞∑
l=1

(1− e−t)l

[l]kp,q

ext

eat − 1

=

∞∑
n=0

1

[l + 1]kp,q

l+1∑
r=0

(
l + 1

r

)
(−1)r

e(x−r)t

eat − 1

=

∞∑
n=0

( ∞∑
l=0

1

[l + 1]kp,q

l+1∑
r=0

(
l + 1

r

)
(−1)r

Bn+1(x− r; a)

n + 1

)
tn

n!
.

Hence, we obtain the result.

B(k)
n,p,q(x; a) =

∞∑
l=0

1

[l + 1]kp,q

l+1∑
r=0

(
l + 1

r

)
(−1)r

Bn+1(x− r; a)

n + 1
.

�

3. Relations with the Stirling numbers of the second kind

In this section, we investigate some identities that is concerned with the Stir-
ling numbers of the second kind by using the generating function. Furthermore,
the definition of the weighted Stirling numbers of the second kind gives some
interesting results that is associated with the generalized poly Bernoulli polyno-
mials with variable a.

From the Equation (1.2), the polylogarithm function Lik,p,q(x) is represented
by the following formula.

1

t
Lik,p,q(1− e−t) =

1

t

∞∑
n=1

n∑
m=1

(−1)n+m

[m]kp,q
m!S2(n,m)

tn

n!

=

∞∑
n=0

n+1∑
m=1

(−1)n+1+m

[m]kp,q
m!

S2(n + 1,m)

n + 1

tn

n!

(3.1)

The above equation gives the following identity that is related with the Stirling
numbers of the second kind.

Theorem 3.1. Let n ∈ Z+, k ∈ Z. Then we have

B(k)
n,p,q(x; a) =

n∑
r=0

r+1∑
l=1

(
n

r

)
(−1)r+1+ll!S2(r + 1, l)

[l]kp,q(r + 1)
Bn−r(x; a).
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Proof. Let n ∈ Z+, k ∈ Z. From the Equation (3.1), the generalized (p, q)-poly-

Bernoulli polynomials B
(k)
n,p,q(x; a) is represented with the Stirling numbers and

the generalized ordinary Bernoulli polynomials with variable a

∞∑
n=0

B(k)
n,p,q(x; a)

tn

n!
=

Lik,p,q(1− e−t)

t

text

eat − 1

=

∞∑
n=0

(
n+1∑
m=1

(−1)n+1+m

[m]kp,q
m!

S2(n + 1,m)

n + 1

)
tn

n!

∞∑
n=0

Bn(x; a)
tn

n!

=

∞∑
n=0

n∑
l=0

l+1∑
m=1

(
n

l

)
(−1)l+1+mm!S2(l + 1,m)

[m]kp,q(l + 1)
Bn−l(x; a)

tn

n!
.

By comparing the coefficients of tn

n! on both sides, the proof is complete. �

Theorem 3.2. If n ∈ Z+ and k ∈ Z, then we get

B(k)
n,p,q(x; a) =

n∑
m=0

m∑
l=0

(
n

m

)
(x)lS2(m, l)B

(k)
n−m,p,q(a). (3.2)

where (x)l = x(x− 1)(x− 2) · · · (x− l + 1) is falling factorial.

Proof. Let n ∈ Z+ and k ∈ Z. The generalized (p, q)-poly-Bernoulli numbers
and polynomials can be indicated by the following formula that is related with
the Stirling numbers.

∞∑
n=0

B(k)
n,p,q(x; a)

tn

n!
=

Lik,p,q(1− e−t)

eat − 1

∞∑
l=0

(x)l
(et − 1)l

l!

=

∞∑
n=0

B(k)
n,p,q(a)

tn

n!

∞∑
l=0

(x)l

∞∑
r=l

S2(r, l)
tr

r!

=
∞∑

n=0

B(k)
n,p,q(a)

tn

n!

∞∑
n=0

n∑
l=0

(x)lS2(n, l)
tn

n!

=

∞∑
n=0

(
n∑

m=0

m∑
l=0

(
n

m

)
(x)lS2(m, l)B

(k)
n−m,p,q(a)

)
tn

n!
.

Comparing the coefficient on both sides, we have the explicit result.

B(k)
n,p,q(x; a) =

n∑
m=0

m∑
l=0

(
n

m

)
(x)lS2(m, l)B

(k)
n−m,p,q(a).

�

From Definition 2.1 and the Equation (3.2), we have the another recurrence
formula that is different from the result of Theorem 2.5.
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Theorem 3.3. For n ≥ 1, k ∈ Z, we get

B(k)
n,p,q(x + a; a)−B(k)

n,p,q(x; a)

=

n−r∑
r=1

r∑
l=0

(
n

r

)
(−1)r+ll!S2(r, l)

[l]kp,q
xn−r.

Proof. Let n ≥ 1, k ∈ Z. From the definition of the generalized (p, q)-ploy-
Bernoulli polynomials, we obtain

∞∑
n=0

B(k)
n,p,q(x + a; a)

tn

n!
−
∞∑

n=0

B(k)
n,p,q(x; a)

tn

n!

=
Lik,p,q(1− e−t)

eat − 1
e(x+a)t − Lik,p,q(1− e−t)

eat − 1
ext

=

∞∑
n=1

n−1∑
l=0

(−1)n+l+1

[l + 1]kp,q
(l + 1)!S2(n, l + 1)

tn

n!

∞∑
m=0

xm tm

m!

=

∞∑
n=1

n∑
l=1

(−1)n+l

[l]kp,q
l!S2(n, l)

tn

n!

∞∑
m=0

xm tm

m!

=

∞∑
n=1

n−r∑
r=1

r∑
l=1

(
n

r

)
(−1)r+l

[l]kp,q
l!S2(r, l)xn−r t

n

n!
.

Therefore, we get the following recurrence formula.

B(k)
n,p,q(x + a; a)−B(k)

n,p,q(x; a) =

n−r∑
r=1

r∑
l=1

(
n

r

)
(−1)r+ll!S2(r, l)

[l]kp,q
xn−r.

�

Theorem 3.4. For n ≥ 1, k ∈ Z, we get

E(k)
n,p,q(x + 1) + E(k)

n,p,q(x) = 2B(k)
n,p,q(x + a; a)− 2B(k)

n,p,q(x; a).

Proof. Let n ≥ 1, k ∈ Z. From the following equation

2Lik,p,q(1− e−t)

et + 1
(1 + et)ext =

2Lik,p,q(1− e−t)

eat − 1
(eat − 1)ext,

we have
∞∑

n=0

E(k)
n,p,q(x + 1)

tn

n!
+

∞∑
n=0

E(k)
n,p,q(x)

tn

n!

= 2

∞∑
n=0

B(k)
n,p,q(x + a; a)

tn

n!
− 2

∞∑
n=0

B(k)
n,p,q(x; a)

tn

n!
.

�
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In [3], Carlitz introduced the weighted Stirling numbers of the second kind
S2(n,m, x) as follows

(et − 1)m

m!
ext =

∞∑
n=m

S2(n,m, x)
tn

n!
(3.3)

Theorem 3.5. If n ∈ N, k ∈ Z. then we have

B(k)
n,p,q(x; a) =

n∑
m=0

(m + 1)!

[m + 1]kp,q

S2(n + 1,m + 1, x− (m + 1))

n + 1
.

Proof. Let n ∈ N, k ∈ Z. From the definition 2.1, we observe that

∞∑
n=0

B(k)
n,p,q(x; a)

tn

n!
=

Lik,p,q(1− e−t)

eat − 1
ext

=

∞∑
m=0

(1− e−t)m+1

[m + 1]kp,q

ext

eat − 1

=

∞∑
m=0

∞∑
n=m+1

(m + 1)!

[m + 1]kp,q

1

eat − 1
S2(n,m + 1, x− (m + 1))

tn

n!

=

∞∑
n=0

n∑
m=0

(m + 1)!

[m + 1]kp,q
Bn,p,q(a)

S2(n + 1,m + 1, x− (m + 1))

n + 1

tn

n!

Comparing the coefficient on both sides, we get the above result. �

Corollary 3.6. Let n ∈ N, k ∈ Z. We obtain

B(k)
n,p,q(x; a) =

n∑
l=1

l∑
m=0

(
n

l

)
(m + 1)!

[m + 1]kp,q
Bl,p,q(a)

S2(l + 1,m + 1)

l + 1
(x− (m + 1))n−l.

Proof. For n ∈ N, k ∈ Z, the generalized (p, q)-poly-Bernoulli polynomials are
satisfied as follows

∞∑
n=0

B(k)
n,p,q(x; a)

tn

n!
=

∞∑
m=0

(1− e−t)m+1

[m+ 1]kp,q

ext

eat − 1

=

∞∑
m=0

(m+ 1)!

[m+ 1]kp,q
Bn,p,q(a)

1

t

∞∑
n=m+1

S2(n,m+ 1)
tn

n!

∞∑
n=0

(x− (m+ 1))n
tn

n!

=

∞∑
n=0

n∑
m=0

l∑
m=0

(
n

l

)
(m+ 1)!

[m+ 1]kp,q
Bl,p,q(a)

S2(l + 1,m+ 1)

l + 1
(x− (m+ 1))n−l t

n

n!
.

Thus, we obtain the desired result. �
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4. Symmetric identities of the generalized (p, q)-poly-Bernoulli
polynomials with variable a

In this section, we construct special functions and find symmetric properties
of the generalized (p, q)-poly-Bernoulli polynomials with variable a from the
special functions.

Theorem 4.1. For m1,m2 > 0 (m1 6= m2), n ∈ Z+, k ∈ Z, we have
n∑

r=0

(
n

r

)
mn−r

1 mr
2B

(k)
r,p,q(m1x; a)B

(k)
n−r,p,q(m2x; a)

=

n∑
r=0

(
n

r

)
mr

1m
n−r
2 B

(k)
n−r,p,q(m1x; a)B(k)

r,p,q(m2x; a).

Proof. For n ∈ Z+, k ∈ Z, m1,m2 > 0 and m1 6= m2, we construct a special
function as below

F (t) =
Lik,p,q(1− e−m1t)Likp,q(1− e−m2t)

(eam1t − 1)(eam2t − 1)
e2m1m2xt.

From the special function F (t), we derive the following equation.

F (t) =
Lik,p,q(1− e−m1t)

(eam1t − 1)
em1m2xt

Lik,p,q(1− e−m2t)

(eam2t − 1)
em1m2xt

=

∞∑
n=0

B(k)
n,p,q(m2x; a)

(m1t)
n

n!

∞∑
r=0

B(k)
r,p,q(m1x; a)

(m2t)
r

r!

=

∞∑
n=0

n∑
r=0

(
n

r

)
mn−r

1 mr
2B

(k)
r,p,q(m1x; a)B

(k)
n−r,p,q(m2x; a)

tn

n!
.

(4.1)

In similar method, we obtain

F (t) =

∞∑
n=0

n∑
r=0

(
n

r

)
mr

1m
n−r
2 B

(k)
n−r,p,q(m1x; a)B(k)

r,p,q(m2x; a)
tn

n!
. (4.2)

By the Equation (4.1) and (4.2), it is easy to get the above theorem. �

Note that S̃n(x,m) = xn+(x+1)n+· · ·+(x−(m−1))m =
∑m−1

k=0 (x + k)
n
, x ∈

C is the power sums on an arithmetic progression. The power sums of the

first integers are expressed by S̃n(m) = S̃n(0,m) =
∑m−1

k=0 kn (see [8]). The
exponential generating function of the power sums are expressed by

∞∑
n=0

S̃n(x,m)
tn

n!
=

emt − 1

et − 1
ext

From the generating function of the power sums of first integers, we have
the symmetric identity of the generalized (p, q)-poly-Bernoulli polynomials with
variable a.
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Theorem 4.2. For n ∈ Z+, k ∈ Z, m1,m2 ∈ N and m1 6= m2, we get

Lik,p,q(1− e−m2t)

n∑
r=0

(
n

r

)
an−rmr

1m
n−r
2 B(k)

r,p,q(m2x; a)S̃n−r(m1)

= Lik,p,q(1− e−m1t)

n∑
r=0

(
n

r

)
an−rmn−r

1 mr
2B

(k)
r,p,q(m1x; a)S̃n−r(m2)

Proof. Let n ∈ Z+ , m1,m2 > 0 and m1 6= m2. If we consider a special function
that is given below, then we get

F (t) =
Lik,p,q(1− e−m1t)Lik,p,q(1− e−m2t)(em1m2t − 1)(eam1m2xt)

(eam1t − 1)(eam2t − 1)

=

∞∑
n=0

Lik,p,q(1− e−m2t)

n∑
r=0

(
n

r

)
an−rmr

1m
n−r
2 B(k)

r,p,q(m2x; a)S̃n−r(m1)
tn

n!
.

In analogous method, we have

F (t) = Lik,p,q(1− e−m1t)

∞∑
n=0

B(k)
n,p,q(m1x)

(m2t)
n

n!

∞∑
r=0

S̃r(m2)
(am1t)

r

r!

=

∞∑
n=0

Lik,p,q(1− e−m1t)

n∑
r=0

(
n

r

)
an−rmn−r

1 mr
2B

(k)
r,p,q(m1x; a)S̃n−r(m2)

tn

n!
.

Comparing the coefficient of tn

n! , then we get the above symmetric identity. �

Theorem 4.3. If n ∈ Z+, k ∈ Z, m1,m2 (m1 6= m2) ∈ N, then we get

Lik,p,q(1− e−m2t)

n∑
r=0

(
n

r

)
an−rmr

1m
n−r
2 B(k)

r,p,q(a)S̃n−r(
m1

a
x,m1)

= Lik,p,q(1− e−m1t)

n∑
r=0

(
n

r

)
an−rmn−r

1 mr
2B

(k)
r,p,q(a)S̃n−r(

m2

a
x,m2)

Proof. For n ∈ Z+ , m1,m2 ∈ N and m1 6= m2. From the special function that
is given in theorem 4.2, then we obtain

F (t) =
Lik,p,q(1− e−m1t)Lik,p,q(1− e−m2t)(em1m2t − 1)(eam1m2xt)

(eam1t − 1)(eam2t − 1)

=

∞∑
n=0

Lik,p,q(1− e−m2t)

n∑
r=0

(
n

r

)
an−rmr

1m
n−r
2 B(k)

r,p,q(a)S̃n−r(
m1

a
x,m1)

tn

n!
.

In similar method, we get

F (t) = Lik,p,q(1− e−m1t)

∞∑
n=0

B(k)
n,p,q(m1x)

(m2t)
n

n!

∞∑
r=0

S̃r(m2)
(am1t)

r

r!

=

∞∑
n=0

Lik,p,q(1− e−m1t)

n∑
r=0

(
n

r

)
an−rmn−r

1 mr
2B

(k)
r,p,q(a)S̃n−r(

m2

a
x,m2)

tn

n!
.



156 N.S. Jung

Therefore, we have the above result. �

Theorem 4.4. Let n ∈ Z+, k ∈ Z and m1,m2 ∈ N (m1 6= m2), we have

n∑
r=0

(
n

r

)
an−rmn−r

1 mr−1
2 Br,p,q(m1x)S̃n−r(m2)

=

n∑
r=0

(
n

r

)
an−rmr−1

1 mn−r
2 Br,p,q(m2x)S̃n−r(m1).

Proof. Let n ∈ Z+, k ∈ Z and m1,m2 ∈ N (m1 6= m2). Consider a special
function F (t) as follows, then we get

F (t) =
Lik,p,q(1− e−m1t)Lik,p,q(1− e−m2t)(eam1m2t − 1)(eam1m2xt)t

(eam1t − 1)
2
(eam2t − 1)

2

=

∞∑
n=0

B(k)
n,p,q(a)

(m1t)
n

n!

∞∑
n=0

B(k)
n,p,q(a)

(m2t)
n

n!

×
∞∑
r=0

S̃r(m2)
(am1t)

r

r!
a−1m−12

∞∑
n=0

Bn,p,q(m1x)
(am2t)

n

n!

=

∞∑
n=0

B(k)
n,p,q(a)

(m1t)
n

n!

∞∑
n=0

B(k)
n,p,q(a)

(m2t)
n

n!

×
∞∑

n=0

n∑
r=0

(
n

r

)
an−1mn−r

1 mr−1
2 Br,p,q(m1x)S̃n−r(m2)

tn

n!
.

In similar method, F (t) is expressed by

F (t) =

∞∑
n=0

B(k)
n,p,q(a)

(m1t)
n

n!

∞∑
n=0

B(k)
n,p,q(a)

(m2t)
n

n!

×
∞∑

n=0

n∑
r=0

(
n

r

)
an−1mn−r

2 mr−1
1 Br,p,q(m2x)S̃n−r(m1)

tn

n!
.

Comparing the coefficient of both sides, we find the symmetric identity:

n∑
r=0

(
n

r

)
an−lmn−r

1 mr−1
2 Br,p,q(m1x)S̃n−r(m2)

=

n∑
r=0

(
n

r

)
an−lmr−1

1 mn−l
2 Br(m2x)S̃n−r(m1).

�
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