• Title/Summary/Keyword: Stiffness Estimation

Search Result 345, Processing Time 0.025 seconds

An Experimental Investigation on the Characteristics of An Automotive Air Spring (자동차 공기스프링의 특성에 대한 실험적 고찰)

  • Lee, J.C.;Liu, H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.8 no.2
    • /
    • pp.17-22
    • /
    • 2011
  • The analysis of an air spring characteristics is necessary to design and control automotive air suspension system properly. A mathematical model of an air spring was derived in light of energy conservation first. Then static and dynamic experiments of the air spring have been fulfilled. The static stiffness with various initial pressures and effective areas were obtained from the static experimental results. Theoretical static stiffness obtained by using the mathematical model and effective area data is in close accordance with the experimental estimation. The dynamic experimental results show that the hysteresis in displacement-force cycle decreases when the frequency of the harmonic displacement excitation signal increases, but it does not change too much as the frequency is higher than 1Hz. And the dynamic stiffness goes up with increasing of the initial pressure and the excitation frequency.

A Study on the Stiffness Estimation in Soft Tissue Using Speckle Brightness Variance Tracking (초음파 의료영상에서 스페클의 시간적 밝기 변화를 이용한 연조직의 stiffness를 추정하는 방법에 대한 연구)

  • 안동기;박정만;권성재;정목근
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.3
    • /
    • pp.141-149
    • /
    • 2003
  • This paper proposes a method of measuring and imaging the stiffness of human soft tissue to diagnose cancers or tumors which have been difficult to detect in ultrasound B-mode imaging systems. To measure the soft tissue stiffness, sinusoidal vibrations are applied to it, and the magnitude of its mechanical vibration is determined by estimating the temporal variation of speckle pattern brightness in ultrasound B-mode images. It is verified by simulation and experiment that the proposed method can estimate the relative tissue stiffness from B-mode images with a relatively small amount of computation.

Estimation of the Elastic Stiffness of TW-HDS Assembly (너비감소 판형 홀다운스프링 집합체의 탄성강성도 평가)

  • Song, Kee-Nam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.1
    • /
    • pp.180-187
    • /
    • 1997
  • A formula for estimating the elastic stiffness of TW-HDS with a uniformly tapered width from w$_{0}$ to w$_{1}$ over the length, has been analytically derived based on Euler beam theory and Castigliano's theorem. Elastic stiffnesses of the TW-HDSs designed in the same dimensional design spaces as the KOFA HDSs have been estimated from the derived formula, in addition, a sensitivity study on the elastic stiffness of the TW-HDSs has been carried out. Analysis results show that elastic stiffnesses of the TW-HDSs have been by far higher than those of the KOFA HDSs, and that, as the effects of axial and shear force on the elastic stiffness have been 0.15-0.21%, most of the elastic stiffness is attributed to the bending moment. As a result of sensitivity analysis, the elastic stiffness sensitivity at each design variable is quantified and design variables having remarkable sensitivity are identified. Among the design variables, leaf thickness is identified as that of having the most remarkable sensitivity of the elastic stiffness.

The Effect of the flexural stiffness of Floor Slabs on The Seismic Response of Multi-story Building Structures (바닥판의 휨강성이 고층건물의 지진거동에 미치는 영향)

  • 김현수
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.170-177
    • /
    • 2000
  • Recently many high-rise apartment buildings are constructed using the box system which is composed only of concrete walls and slabs. Commercial softwares such as ETABS used for the analysis of high-rise apartment buildings are employing the rigid diaphragm assumption for simplicity in the analysis procedure. In general the flexural stiffness of floor slabs are ignored in the analysis, This assumption may be reasonable for the estimation of seismic response of framed structures. But in the case of the box system used in the apartment buildings floor slabs has major effects on the lateral stiffness of the structure. So if the flexural stiffness of slabs in the box system is ignored the lateral stiffness may be significantly underestimated, For these reasons it is recommended to use plate elements to represent the floor slabs. In the study A typical frame structure and a box system structure are chosen as the example structure. When a 20 story frame structure is subjected to the static lateral loads the displacements of the roof are 15.33cm and 17.52cm for the cases with and without the flexural stiffness of the floor slabs. And in case of box system the roof displacement was reduced from 16.18cm to 8.61cm The model without the flexural stiffness of floor slabs turned out to elongate the natural periods of vibration accordingly.

  • PDF

Repetitive model refinement for structural health monitoring using efficient Akaike information criterion

  • Lin, Jeng-Wen
    • Smart Structures and Systems
    • /
    • v.15 no.5
    • /
    • pp.1329-1344
    • /
    • 2015
  • The stiffness of a structure is one of several structural signals that are useful indicators of the amount of damage that has been done to the structure. To accurately estimate the stiffness, an equation of motion containing a stiffness parameter must first be established by expansion as a linear series model, a Taylor series model, or a power series model. The model is then used in multivariate autoregressive modeling to estimate the structural stiffness and compare it to the theoretical value. Stiffness assessment for modeling purposes typically involves the use of one of three statistical model refinement approaches, one of which is the efficient Akaike information criterion (AIC) proposed in this paper. If a newly added component of the model results in a decrease in the AIC value, compared to the value obtained with the previously added component(s), it is statistically justifiable to retain this new component; otherwise, it should be removed. This model refinement process is repeated until all of the components of the model are shown to be statistically justifiable. In this study, this model refinement approach was compared with the two other commonly used refinement approaches: principal component analysis (PCA) and principal component regression (PCR) combined with the AIC. The results indicate that the proposed AIC approach produces more accurate structural stiffness estimates than the other two approaches.

MARS inverse analysis of soil and wall properties for braced excavations in clays

  • Zhang, Wengang;Zhang, Runhong;Goh, Anthony. T.C.
    • Geomechanics and Engineering
    • /
    • v.16 no.6
    • /
    • pp.577-588
    • /
    • 2018
  • A major concern in deep excavation project in soft clay deposits is the potential for adjacent buildings to be damaged as a result of the associated excessive ground movements. In order to accurately determine the wall deflections using a numerical procedure such as the finite element method, it is critical to use the correct soil parameters such as the stiffness/strength properties. This can be carried out by performing an inverse analysis using the measured wall deflections. This paper firstly presents the results of extensive plane strain finite element analyses of braced diaphragm walls to examine the influence of various parameters such as the excavation geometry, soil properties and wall stiffness on the wall deflections. Based on these results, a multivariate adaptive regression splines (MARS) model was developed for inverse parameter identification of the soil relative stiffness ratio. A second MARS model was also developed for inverse parameter estimation of the wall system stiffness, to enable designers to determine the appropriate wall size during the preliminary design phase. Soil relative stiffness ratios and system stiffness values derived via these two different MARS models were found to compare favourably with a number of field and published records.

Estimation of the Variation of Quantity in PWV in Accordance with the Changes of Position in Human (자세변화에 따른 PWV 변화량의 평가)

  • Jun, Suk-Hwan;Jeong, In-Cheol;Jung, Sang-O;Yoon, Hyung-Ro
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.2
    • /
    • pp.129-134
    • /
    • 2009
  • The ideal method which measures a blood vessel of senility and degree of arteriosclerosis is to measure compliance of arterial and condition of blood circulation at the periphery. In these days vascular stiffness have been assessed by analyzing PTT (pulse transit time) from ECG and PPG. PTT is that between toe and finger each subject estimated through ECG and PPG signals. Two parameters, which are related to PWV, were tested with the time delay between the finger and toe. PWV is a variation of quantity which is associated with vascular stiffness. These researches which use PTT and PWV don't consider the blood vessel characteristic of an individual. In this current research, we have used with the blood vessel characteristic of an individual. That is an assessment of vascular stiffness using the variation of quantity in PWV with the changes of position in the subject. PWV variation increased as functions of the subject's age. The increase of the PWV variation parameters with age is attributed to the direct decrease of the blood vessel compliance with different position. The quantity of variation estimated by experimental results is that old age's (75.78${\pm}$7.75) case is 113.68% and young age's (26.47${\pm}$2.04) case is 85.69%. We proved and presented about estimation of vascular stiffness of possibility by this result.

Lateral Stiffness and Natural Period Evaluation of Flat Plate Tall Buildings for Wind Design (내풍설계를 위한 초고층 무량판 건축물의 횡강성 및 고유주기 산정)

  • Park, Je-Woo;Kim, Hong-Jin;Jo, Ji-Seong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.1
    • /
    • pp.73-80
    • /
    • 2010
  • Wind-induced vibration is one of the important structural design factors for serviceability of tall buildings. In order to evaluate the reliable wind-loads and wind induced-vibration, it is necessary to obtain the exact natural period of buildings. The discrepancy in the natural period estimation often results in the overestimation of wind loads. In this study, the effectiveness of lateral stiffness estimation method for tall buildings with flat plate system is evaluated. For this purposed, the results of finite element analysis of three recently constructed buildings are compared with those obtained from field measurement. For the analysis, factors affecting on the lateral resistance such as cracked stiffness of vertical members, elastic modulus of concrete, effective slab width, and cracked stiffness of link beam are considered. Form the results, it is found that the use of non-cracked stiffness and application of dynamic modulus of elasticity rather than initial secant modulus yields closer analysis result to the as-built period.

Damage Detection in Shear Building Based on Genetic Algorithm Using Flexibility Matrix (유연도 행렬을 이용한 전단빌딩의 유전자 알고리즘 기반 손상추정)

  • Na, Chae-Kuk;Kim, Sun-Pil;Kwak, Hyo-Gyoung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.1
    • /
    • pp.1-11
    • /
    • 2008
  • Stiffness estimation of a shear building due to local damages is usually achieved though structural analysis based on the assumed material properties and idealized numerical modeling of structure. Conventional numerical modeling, however, frequently causes an inevitable error in the structural response and this makes it difficult to exactly predict the damage state in structure. To solve this problem, this paper introduces a damage detection technique for shear building using genetic algorithm. The introduced algorithm evaluates the damage in structure using a flexibility matrix since the flexibility matrix can exactly be obtained from the field test in spite of using a few lower dynamic modes of structure. The introduced algorithm is expected to be more effectively used in damage detection of structures rather than conventional method using the stiffness matrix. Moreover, even in cases when an accurate measurement of structural stiffness cannot be expected, the proposed technique makes it possible to estimate the absolute change in stiffness of the structure on the basis of genetic algorithm. The validity of the proposed technique is demonstrated though numerical analysis using OPENSEES.