Browse > Article

Damage Detection in Shear Building Based on Genetic Algorithm Using Flexibility Matrix  

Na, Chae-Kuk (한국과학기술원 건설 및 환경공학과)
Kim, Sun-Pil (현대건설 기술개발원)
Kwak, Hyo-Gyoung (한국과학기술원 건설 및 환경공학과)
Publication Information
Journal of the Computational Structural Engineering Institute of Korea / v.21, no.1, 2008 , pp. 1-11 More about this Journal
Abstract
Stiffness estimation of a shear building due to local damages is usually achieved though structural analysis based on the assumed material properties and idealized numerical modeling of structure. Conventional numerical modeling, however, frequently causes an inevitable error in the structural response and this makes it difficult to exactly predict the damage state in structure. To solve this problem, this paper introduces a damage detection technique for shear building using genetic algorithm. The introduced algorithm evaluates the damage in structure using a flexibility matrix since the flexibility matrix can exactly be obtained from the field test in spite of using a few lower dynamic modes of structure. The introduced algorithm is expected to be more effectively used in damage detection of structures rather than conventional method using the stiffness matrix. Moreover, even in cases when an accurate measurement of structural stiffness cannot be expected, the proposed technique makes it possible to estimate the absolute change in stiffness of the structure on the basis of genetic algorithm. The validity of the proposed technique is demonstrated though numerical analysis using OPENSEES.
Keywords
genetic algorithm; damage detection; stiffness estimation; flexibility matrix; shear building;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 박재형, 김정태, 류연선, 이진학 (2006) 고유진동수와 모드변형에너지를 이용한 향상된 유전알고리즘 기반 손상검색기법, 한국전산구조공학회 논문집, 19(3), pp.313-322   과학기술학회마을
2 이종재, 이종원, 윤정방 (2005) 상시진동 데이터를 이용한 교량의 손상추정기법, 대한토목학회 논문집, 25(2A), pp. 375-385
3 Beyer, H.G. (2001) The theory of evolution strategies, Springer, Germany, p.380
4 Perry, M.J., Koh, C.G., Choo, Y.S. (2006) Modified genetic algorithm strategy for structural identification, Computers and Structures, 84(8-9), pp. 529-540   DOI   ScienceOn
5 최병만, 우호길 (2007) 유전자 알고리즘을 이용한 구조물 손상 탐색기법에 관한 논문, 한국소음진동공학회 논문집, 17(1), pp.80-87   과학기술학회마을   DOI
6 Pandey, A.K., Biswas, M. (1994) Damage detection in structures using changes in flexibility, Journal of Sound and Vibration, 169(1), pp.3-17   DOI   ScienceOn
7 Michalewicz, Z. (1999) Genetic algorithms + Data structures=Evolution programs, Springer, Germany, p.387
8 Doebling, S.W. (1996) Minimum-rank optimal update of elemental stiffness parameters for structural damage identification, AIAA Journal, 34(12), pp.2615-2621   DOI   ScienceOn
9 Wu, X., Ghaboussi, J., Garrett, J.H. (1992) Use of neural networks in detection of structural damage, Computers and Structures, 42(5), pp.649-659   DOI   ScienceOn
10 Mares, C., Surace, C. (1996) An application of genetic algorithms to identify damage in elastic structures, Journal of Sound and Vibration, 195 (2), pp.195-215   DOI   ScienceOn
11 Lu, Q., Ren, G., Zhao, Y. (2002) Multiple damage location with flexibility curvature and relative frequency change for beam structures, Journal of Sound and Vibration, 253(5), pp.1101-1114   DOI   ScienceOn
12 Sreenivas, A., Gongkang, F., Everett, W.D. (1997) Signal versus noise in damage detection by experimental modal analysis, Journal of Structural Engineering, ASCE, 123(2), pp.237-245   DOI   ScienceOn
13 Stutz, L.T., Castello, D.A., Rochinha, R.A. (2005) A flexibility-based continuum damage identification approach, Journal of Sound and Vibration, 279 (3-5), pp.641-667   DOI   ScienceOn
14 Yan, A., Golinval, J.C. (2005) Structural damage localization by combining flexibility and stiffness methods, Engineering Structures, 27(12), pp.1752-1761   DOI   ScienceOn
15 Chou, J.H, Chaboussi, J. (2001) Genetic algorithm in structural damage detection, Computers and Structures, 79(14), pp.1335-1353   DOI   ScienceOn
16 Hajela, P., Soeiro, F.J. (1990) Recent developments in damage detection based on system identification methods, Structural Optimization, 2(1), pp.1-10   DOI
17 윤정방, 이진학, 이종재, 이정석, 전귀현 (2004) 유전자 알고리즘을 이용한 모드기반 교량의 해석모델개선, 한국전산구조공학회 논문집, 17(4), pp.389-403
18 Kim, H.M., Bartkowicz, T.J. (1993) Damage detection and health monitoring of large space structures, Structures, Structural Dynamics and Materials Conference, 34th AIAA/ASME Adaptive Struc tures Forum, La Jolla, USA, pp.3527-3533
19 Ge, M., Lui, E.M. (2005) Structural damage identification using system dynamic properties, Computers and Structures, 83(27), pp.2185-2196   DOI   ScienceOn
20 Ratcliffe, C.P. (1997) Damage detection using a modified Laplacian operator on mode shape data, Journal of Sound and Vibration, 204(3), pp.505-517   DOI   ScienceOn
21 Toksoy, T., Aktan, A.E. (1994) Bridge-condition assessment by modal flexibility, Experimental Mechanics, pp.271-278
22 Cobb, R.G., Liebst, B.S. (1997) Structural damage identification from frequency response data, Navigation and Control Conference, Proceedings of AIAA Guidance, Baltimore, USA, pp.334-344
23 Juneja, V., Haftka, R.T., Cudney H.H. (1997) Damage detection and damage detectability - analysis and experiments, Journal of Aerospace Engineering, ASCE, 10(4), pp.135-142   DOI   ScienceOn