Browse > Article
http://dx.doi.org/10.12989/gae.2018.16.6.577

MARS inverse analysis of soil and wall properties for braced excavations in clays  

Zhang, Wengang (Key Laboratory of New Technology for Construction of Cities in Mountain Area, Chongqing University)
Zhang, Runhong (School of Civil Engineering, Chongqing University)
Goh, Anthony. T.C. (School of Civil and Environmental Engineering, Nanyang Technological University)
Publication Information
Geomechanics and Engineering / v.16, no.6, 2018 , pp. 577-588 More about this Journal
Abstract
A major concern in deep excavation project in soft clay deposits is the potential for adjacent buildings to be damaged as a result of the associated excessive ground movements. In order to accurately determine the wall deflections using a numerical procedure such as the finite element method, it is critical to use the correct soil parameters such as the stiffness/strength properties. This can be carried out by performing an inverse analysis using the measured wall deflections. This paper firstly presents the results of extensive plane strain finite element analyses of braced diaphragm walls to examine the influence of various parameters such as the excavation geometry, soil properties and wall stiffness on the wall deflections. Based on these results, a multivariate adaptive regression splines (MARS) model was developed for inverse parameter identification of the soil relative stiffness ratio. A second MARS model was also developed for inverse parameter estimation of the wall system stiffness, to enable designers to determine the appropriate wall size during the preliminary design phase. Soil relative stiffness ratios and system stiffness values derived via these two different MARS models were found to compare favourably with a number of field and published records.
Keywords
wall deflection; braced excavation; soil stiffness ratio; case histories; multivariate adaptive regression splines; inverse analysis;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Lashkari, A. (2012), "Prediction of the shaft resistance of nondisplacement piles in sand", Int. J. Numer. Anal. Meth. Geomech., 37(8), 904-931.   DOI
2 Lecampion, B., Constantinescu, A. and Nguyen Minh, D. (2002), "Parameter identification for lined tunnels in viscoplastic medium", Int. J. Numer. Anal. Meth. Geomech., 26(12), 1191-1211.   DOI
3 Levasseur, S., Malecot, Y., Boulon, M. and Flavigny, E. (2008), "Soil parameter identification using a genetic algorithm", Int. J. Numer. Anal. Meth. Geomech., 32(2), 189-213.   DOI
4 Levasseur, S., Malecot, Y., Boulon, M. and Lavigny, E. (2010), "Statistical inverse analysis based on genetic algorithm and principal component analysis: Applications to excavation problems and pressuremeter tests", Int. J. Numer. Anal. Meth. Geomech., 34(5), 471-491.   DOI
5 Li, W. (2001), "Braced excavation in old alluvium in Singapore", Ph.D. Thesis, Nanyang Technological University, Nanyang, Singapore.
6 Lim, K.W., Wong, K.S., Orihara, K. and Ng, P.B. (2003), "Comparison of results of excavation analysis using WALLUP, SAGE CRISP, and EXCAV97", Proceedings of the Singapore Underground, Nanyang, Singapore, November.
7 Miranda, T. (2007), "Geomechanical parameters evaluation in underground structures. Artificial intelligence, Bayesian probabilities and inverse methods", Ph.D. Thesis, University of Minho, Guimaraes, Portugal.
8 Mirzahosseinia, M., Aghaeifarb, A., Alavic, A., Gandomic, A. and Seyednour, R. (2011), "Permanent deformation analysis of asphalt mixtures using soft computing techniques", Expert Syst. Appl., 38(5), 6081-6100.   DOI
9 Moreira, N., Miranda, T., Pinheiro, M., Fernandes, P., Dias, D., Costa, L. and Sena-Cruz, J. (2013), "Back analysis of geomechanical parameters in underground works using an Evolution Strategy algorithm", Tunn. Undergr. Sp. Technol., 33, 143-158.   DOI
10 Moh, Z.C. and Song, T.F. (2013), "Performance of diaphragm walls in deep foundation excavations", Proceedings of the 1st International Conferences on Case Histories in Geotechnical Engineering, St. Louis, Missouri, U.S.A., May.
11 Ou, C.Y., Hsieh, P.G. and Chiou, D.C. (1993), "Characteristics of ground surface settlement during excavation", Can. Geotech. J., 30(5), 758-767.   DOI
12 Ou, C.Y. and Tang, Y. (1994), "Soil parameter determination for deep excavation analysis by optimization", J. Chin. Inst. Eng., 17(5), 671-688.   DOI
13 Papon, A., Riou, Y., Dano, C. and Hicher, P.Y. (2011), "Single and multi-objective genetic algorithm optimization for identifying soil parameters", Int. J. Numer. Anal. Meth. Geomech., 36(5), 597-618.   DOI
14 Wang, Z.W., Ng, C.W.W. and Liu, G.B. (2005), "Characteristics of wall deflections and ground surface settlements in Shanghai", Can. Geotech. J., 42(5), 1243-1254.   DOI
15 Rechea, C., Levasseur, S. and Finno, R. (2008), "Inverse analysis techniques for parameter identification in simulation of excavation support systems", Comput. Geotech., 35(3), 331-345.   DOI
16 Samui, P. (2011), "Determination of ultimate capacity of driven piles in cohesionless soil: A multivariate adaptive regression spline approach", Int. J. Numer. Anal. Meth. Geomech., 36(11), 1434-1439.   DOI
17 Samui, P. and Karup, P. (2011), "Multivariate adaptive regression spline and least square support vector machine for prediction of undrained shear strength of clay". Int. J. Appl. Metaheur. Comput., 3(2), 33-42.   DOI
18 Zarnani, S., El-Emam, M. and Bathurst, R.J. (2011), "Comparison of numerical and analytical solutions for reinforced soil wall shaking table tests", Geomech. Eng., 3(4), 291-321.   DOI
19 Xu, Z.H., Wang, W.D., Wang, J.H. and Shen, S.L. (2005), "Performance of deep excavation retaining wall in Shanghai soft deposit", Lowland Technol. Int., 7(2), 31-43.
20 Yan, W.M., Yuen, K.V. and Yoon, G.L. (2009), "Bayesian probabilistic approach for the correlations of compressibility index for marine clays", J. Geotech. Geoenviron. Eng., 135(12), 1932-1940.   DOI
21 Zentar, R., Hicher, P. and Moulin, G. (2001), "Identification of soil parameters by inverse analysis", Comput. Geotech., 28(2), 129-144.   DOI
22 Zhang, C.S., Ji, J., Gui, Y.L., Kodikara, J., Yang, S.Q. and He, L. (2016), "Evaluation of soil-concrete interface shear strength based on LS-SVM", Geomech. Eng., 11(3), 361-372.   DOI
23 Zhang, W.G. and Goh, A.T.C. (2013), "Multivariate adaptive regression splines for analysis of geotechnical engineering systems", Comput. Geotech., 48, 82-95.   DOI
24 Chiu, C.F., Yan, W.M. and Yuen, K.V. (2012), "Estimation of water retention curve of granular soils from particle size distribution-a Bayesian probabilistic approach", Can. Geotech. J., 49(9), 1024-1035.   DOI
25 Zhang, W.G. and Goh, A.T.C. (2014), "Multivariate adaptive regression splines model for reliability assessment of serviceability limit state of twin caverns", Geomech. Eng., 7(4), 431-458.   DOI
26 Zhang, W.G. and Goh, A.T.C. (2015), "Nonlinear modeling using multivariate adaptive regression splines", Comput. Concrete, 16, 569-585.   DOI
27 Attoh-Okine, N.O., Cooger, K. and Mensah, S. (2009), "Multivariate adaptive regression spline (MARS) and hinged hyper planes (HHP) for doweled pavement performance modeling", Construct. Build. Mater., 23(9), 3020-3023.   DOI
28 Brinkgreve, R.J.B., Broere, W. and Watermanm, D. (2006), PLAXIS version 8.5 Manual, AA Balkema, Rotterdam, The Netherlands.
29 Calvello, M. and Finno, R.J. (2004), "Selecting parameters to optimize in model calibration by inverse analysis", Comput. Geotech., 31(5), 411-425.
30 Clough, G.W. and O'Rourke, T.D. (1990), "Construction induced movements of in situ walls", Proceedings of the Specialty Conference on Design and Performance of Earth Retaining Structures, Ithaca, New York, U.S.A., June.
31 Fang, M.L. (1987), "A deep excavation in Taipei Basin", Proceedings of the 9th Southeast Asian Geotechnical Conference, Bangkok, Thailand, December.
32 Zhang, W.G., Goh, A.T.C. and Xuan, F. (2015), "A simple prediction model for wall deflection caused by braced excavation in clays", Comput. Geotech., 63, 67-72.   DOI
33 Zhang, W.G. and Goh, A.T.C. (2016a), "Evaluating seismic liquefaction potential using multivariate adaptive regression splines and logistic regression", Geomech. Eng., 10(3), 269-284.   DOI
34 Zhang, W.G. and Goh, A.T.C. (2016b), "Multivariate adaptive regression splines and neural network models for prediction of pile drivability", Geosci. Front., 7(1), 45-52.   DOI
35 Zhang, W.G. and Goh, A.T.C. (2018), "Reliability analysis of geotechnical infrastructures: Introduction", Geosci. Front.
36 Zhao, B.D., Zhang, L.L., Jeng, D.S., Wang, J.H. and Chen, J.J. (2015), "Inverse analysis of deep excavation using differential evolution algorithm", Int. J. Numer. Anal. Meth. Geomech., 39(2), 115-134.   DOI
37 Goh, A.T.C., Wong, K.S., Teh, C.I. and Wen, D. (2003), "Pile response adjacent to braced excavation", J. Geotech. Geoenviron. Eng., 129(4), 383-386.   DOI
38 Fang, T.C., Tsai, Y.Y., Su, T.C., Tsung, P. and Seeley, P. (2004), "A case study on time-dependent displacement of diaphragm wall induced by creep of soft clay", Proceedings of the 5th Cross-Strait Geotechnics Seminars, Taipei, Taiwan, November.
39 Friedman, J.H. (1991), "Multivariate adaptive regression splines", Ann. Stat., 19, 1-67.   DOI
40 Gioda, G. (1985), "Some remarks on back analysis and characterization problems in geomechanics", Proceedings of the 5th International Conference on Numerical Methods in Geomechanics, Nagoya, Japan, April.
41 Goh, A.T.C. and Zhang, W.G. (2014), "An improvement to MLR model for predicting liquefaction-induced lateral spread using multivariate adaptive regression splines", Eng. Geol., 170, 1-10.   DOI
42 Goh, A.T.C., Zhang, W.G., Zhang, Y.M., Xiao, Y. and Xiang, Y.Z. (2018), "Determination of EPB tunnel-related maximum surface settlement: A multivariate adaptive regression splines approach", Bull. Eng. Geol. Environ., 77(2), 489-500.   DOI
43 Goh, A.T.C., Zhang, Y.M., Zhang, R.H., Zhang, W.G. and Xiao, Y. (2017), "Evaluating stability of underground entry-type excavations using multivariate adaptive regression splines and logistic regression", Tunn. Undergr. Sp. Technol., 70, 148-154.   DOI
44 Koutsoftas, D.C., Frobenius, P., Wu, C.L., Meyersohn, D. and Kulesza, R. (2000), "Deformations during cut-and cover construction of MUNI metro turnback project", J. Geotech. Geoenviron. Eng., 126(4), 344-359.   DOI
45 Hashash, Y., Levasseur, S., Osouli, A., Finno, R. and Malecot, Y. (2010), "Comparison of two inverse analysis techniques for learning deep excavation response", Comput. Geotech., 37(3), 323-333.   DOI
46 Hastie, T., Tibshirani, R. and Friedman, J. (2009), The Elements of Statistical Learning: Data Mining, Inference and Prediction, Springer.
47 Jekabsons, G. (2010), "VariReg: A software tool for regression modelling using various modeling methods", Riga Technical University, .
48 Ji, J., Zhang, C., Gui, Y., Lu, Q. and Kodikara, J. (2016), "New observations on the application of LS-SVM in slope system reliability analysis", J. Comput. Civ. Eng., 31(2), 06016002.   DOI
49 Juang, C.H., Luo, Z., Atamturktur, S. and Huang, H. (2013), "Bayesian updating of soil parameters for braced excavations using field observations", J. Geotech. Geoenviron. Eng., 139(3), 395-406.   DOI
50 Kung, G.T.C., Hsiao, E.C.L. and Juang, C.H. (2007), "Evaluation of a simplified small-strain soil model for analysis of excavation-induced movements", Can. Geotech. J., 44(6), 726-736.   DOI