Damage Detection in Shear Building Based on Genetic Algorithm Using Flexibility Matrix

유연도 행렬을 이용한 전단빌딩의 유전자 알고리즘 기반 손상추정

  • 나채국 (한국과학기술원 건설 및 환경공학과) ;
  • 김선필 (현대건설 기술개발원) ;
  • 곽효경 (한국과학기술원 건설 및 환경공학과)
  • Published : 2008.02.28

Abstract

Stiffness estimation of a shear building due to local damages is usually achieved though structural analysis based on the assumed material properties and idealized numerical modeling of structure. Conventional numerical modeling, however, frequently causes an inevitable error in the structural response and this makes it difficult to exactly predict the damage state in structure. To solve this problem, this paper introduces a damage detection technique for shear building using genetic algorithm. The introduced algorithm evaluates the damage in structure using a flexibility matrix since the flexibility matrix can exactly be obtained from the field test in spite of using a few lower dynamic modes of structure. The introduced algorithm is expected to be more effectively used in damage detection of structures rather than conventional method using the stiffness matrix. Moreover, even in cases when an accurate measurement of structural stiffness cannot be expected, the proposed technique makes it possible to estimate the absolute change in stiffness of the structure on the basis of genetic algorithm. The validity of the proposed technique is demonstrated though numerical analysis using OPENSEES.

전단빌딩에 발생한 손상 추정에 있어서 대상 구조물의 물성치를 가정하고 이상화한 모델을 이용한 역해석이 필요하다. 강성행렬을 이용하는 고전적인 손상추정 방법에 비해 유연도 행렬을 이용한 손상추정은 구조물의 저차모드를 이용하기 때문에 비교적 정확한 값을 계산할 수 있기 때문에 더 효과적으로 알려져 있다. 이 논문에서는 손상추정을 위한 알고리즘으로 유전자 알고리즘(Genetic Algorithm, GA)을 도입하였고, 구조 응답에서 취득할 수 있는 유연도 행렬을 이용하여 역해석을 통한 손상추정 기법을 소개하고 있다. 제안된 손상추정 기법은 전단빌딩의 강성에 대한 정확한 정보가 없는 상황에서 전단빌딩의 손상으로 인한 실제 강성변화량을 추정하도록 하였다. 더불어 open source code인 OPENSEES를 이용하여 전단빌딩 수치해석을 통해 제안된 손상추정 기법의 효율성을 검증하였다.

Keywords

References

  1. 박재형, 김정태, 류연선, 이진학 (2006) 고유진동수와 모드변형에너지를 이용한 향상된 유전알고리즘 기반 손상검색기법, 한국전산구조공학회 논문집, 19(3), pp.313-322
  2. 윤정방, 이진학, 이종재, 이정석, 전귀현 (2004) 유전자 알고리즘을 이용한 모드기반 교량의 해석모델개선, 한국전산구조공학회 논문집, 17(4), pp.389-403
  3. 이종재, 이종원, 윤정방 (2005) 상시진동 데이터를 이용한 교량의 손상추정기법, 대한토목학회 논문집, 25(2A), pp. 375-385
  4. 최병만, 우호길 (2007) 유전자 알고리즘을 이용한 구조물 손상 탐색기법에 관한 논문, 한국소음진동공학회 논문집, 17(1), pp.80-87 https://doi.org/10.5050/KSNVN.2007.17.1.080
  5. Beyer, H.G. (2001) The theory of evolution strategies, Springer, Germany, p.380
  6. Chou, J.H, Chaboussi, J. (2001) Genetic algorithm in structural damage detection, Computers and Structures, 79(14), pp.1335-1353 https://doi.org/10.1016/S0045-7949(01)00027-X
  7. Cobb, R.G., Liebst, B.S. (1997) Structural damage identification from frequency response data, Navigation and Control Conference, Proceedings of AIAA Guidance, Baltimore, USA, pp.334-344
  8. Doebling, S.W. (1996) Minimum-rank optimal update of elemental stiffness parameters for structural damage identification, AIAA Journal, 34(12), pp.2615-2621 https://doi.org/10.2514/3.13447
  9. Hajela, P., Soeiro, F.J. (1990) Recent developments in damage detection based on system identification methods, Structural Optimization, 2(1), pp.1-10 https://doi.org/10.1007/BF01743515
  10. Juneja, V., Haftka, R.T., Cudney H.H. (1997) Damage detection and damage detectability - analysis and experiments, Journal of Aerospace Engineering, ASCE, 10(4), pp.135-142 https://doi.org/10.1061/(ASCE)0893-1321(1997)10:4(135)
  11. Kim, H.M., Bartkowicz, T.J. (1993) Damage detection and health monitoring of large space structures, Structures, Structural Dynamics and Materials Conference, 34th AIAA/ASME Adaptive Struc tures Forum, La Jolla, USA, pp.3527-3533
  12. Lu, Q., Ren, G., Zhao, Y. (2002) Multiple damage location with flexibility curvature and relative frequency change for beam structures, Journal of Sound and Vibration, 253(5), pp.1101-1114 https://doi.org/10.1006/jsvi.2001.4092
  13. Ge, M., Lui, E.M. (2005) Structural damage identification using system dynamic properties, Computers and Structures, 83(27), pp.2185-2196 https://doi.org/10.1016/j.compstruc.2005.05.002
  14. Mares, C., Surace, C. (1996) An application of genetic algorithms to identify damage in elastic structures, Journal of Sound and Vibration, 195 (2), pp.195-215 https://doi.org/10.1006/jsvi.1996.0416
  15. Michalewicz, Z. (1999) Genetic algorithms + Data structures=Evolution programs, Springer, Germany, p.387
  16. Perry, M.J., Koh, C.G., Choo, Y.S. (2006) Modified genetic algorithm strategy for structural identification, Computers and Structures, 84(8-9), pp. 529-540 https://doi.org/10.1016/j.compstruc.2005.11.008
  17. Pandey, A.K., Biswas, M. (1994) Damage detection in structures using changes in flexibility, Journal of Sound and Vibration, 169(1), pp.3-17 https://doi.org/10.1006/jsvi.1994.1002
  18. Ratcliffe, C.P. (1997) Damage detection using a modified Laplacian operator on mode shape data, Journal of Sound and Vibration, 204(3), pp.505-517 https://doi.org/10.1006/jsvi.1997.0961
  19. Sreenivas, A., Gongkang, F., Everett, W.D. (1997) Signal versus noise in damage detection by experimental modal analysis, Journal of Structural Engineering, ASCE, 123(2), pp.237-245 https://doi.org/10.1061/(ASCE)0733-9445(1997)123:2(237)
  20. Stutz, L.T., Castello, D.A., Rochinha, R.A. (2005) A flexibility-based continuum damage identification approach, Journal of Sound and Vibration, 279 (3-5), pp.641-667 https://doi.org/10.1016/j.jsv.2003.11.043
  21. Toksoy, T., Aktan, A.E. (1994) Bridge-condition assessment by modal flexibility, Experimental Mechanics, pp.271-278
  22. Wu, X., Ghaboussi, J., Garrett, J.H. (1992) Use of neural networks in detection of structural damage, Computers and Structures, 42(5), pp.649-659 https://doi.org/10.1016/0045-7949(92)90132-J
  23. Yan, A., Golinval, J.C. (2005) Structural damage localization by combining flexibility and stiffness methods, Engineering Structures, 27(12), pp.1752-1761 https://doi.org/10.1016/j.engstruct.2005.04.017