• 제목/요약/키워드: Stick Friction

검색결과 156건 처리시간 0.026초

자동차 클러치의 마찰 모델과 시뮬레이션 (On the Modeling and Simulation of Friction for an Automotive Clutch)

  • 이병수;이재천
    • 한국소음진동공학회논문집
    • /
    • 제13권2호
    • /
    • pp.116-125
    • /
    • 2003
  • Four models for stick-slip friction are presented and are adopted for a numerical simulation study for a manual transmission clutch damper in idle mode. Meaning of parameters for friction models are explained and proper values are suggested. Also explained ate the reason why those specific values for the parameters are chosen. Preferable model for the clutch damper In Idle mode is discussed in terms of calculation efficiency and fidelity of the model based on real measured data. For clutch damper idle mode simulation studies, all four models perform equally well.

비선형 마찰특성을 고려한 비례제어밸브·유압실린더계의 적응 이산시간 슬라이딩모드 추적제어 (Adaptive Discrete Time Sliding-Mode Tracking Control of a Proportional Control Valve-Hydraulic System in the presence of friction)

  • 유환신;박형배
    • 한국항행학회논문지
    • /
    • 제13권5호
    • /
    • pp.756-762
    • /
    • 2009
  • 비선형 마찰인 유압 작동기의 스틱-슬립 마찰은 정확성과 응답성에 문제가 된다. 그러므로 마찰보상은 다양한 제어알고리즘을 통하여 연구되어 왔다. 적응이산시간 슬라이딩 추종제어기는 유압작동기 내의 비선형 마찰 특성을 보상하기 위하여 적용하였다. 다오판틴 방정식을 기초로 하여 새로운 이산시간 슬라이딩 함수는 마찰과 모델링 오차를 포함하여 제어법칙을 정의하였다. 비선형 파라미터의 추종성을 기초로 슬라이딩 함수와 프로젝션 항수를 이용하여 강인성을 높였다. 시뮬레이션과 실험결과는 좋은 추종성능을 얻었다.

  • PDF

탄소 섬유 보강 폴리에테르에테르케톤의 마찰 및 마모 거동에 관한 연구 (A Study on Friction and Wear Behavior of Carbon Fiber Reinforced Polyetheretherketone)

  • 류성국;김경웅
    • 대한기계학회논문집A
    • /
    • 제25권6호
    • /
    • pp.930-937
    • /
    • 2001
  • The friction and wear behavior of short carbon fiber reinforced polyetheretherketone was studied experimentally under dry sliding conditions against SCM440(AISI 4140) disks with different surface roughness and hardness at the low sliding speeds and the high pressures on a pin-on-disk apparatus. Under the low disk surface roughness value the earsplitting noise and stick-slip were occurred. The increased adhesion friction and wear factor with stick-slip made the friction and wear behavior worse. Under the high disk surface hardness the break and falling-off of carbon fibers were accelerated. The carbon fibers fallen off from the matrix were ground into powder between two wear surfaces and this phenomenon caused abrasive friction and wear factor to increase. So the friction and wear behavior became worse. With the transfer film made of wear particles formed on a disk, the carbon powder film formed on a pin lowered a friction coefficient.

유압 텔레스코픽 붐의 스틱-슬립에 대한 거동해석 (Behavior analysis on stick-slip of hydraulic telescopic boom)

  • 백일현;정재연;김신
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 제35회 춘계학술대회
    • /
    • pp.296-303
    • /
    • 2002
  • Tribology, in other words, interacting surfaces in relative motion, is essential in life. The relative motion on surfaces may cause some problems with heat, vibration, noise, and so on. Unwanted vibrations by friction, which may arise during the operation of machines, are costly in terms of reduction of performance and service life. All these phenomena inolve stick-slip. The telescopic boom operations involves stick-slip oscillations like slideways. Unwanted stick-slip oscillations on telescopic boom operations cannot achieve smooth sliding and many developers of that machine makes a lot of effort to remove or reduce it. So this paper presents stick-slip oscillation with pressure of the hydraulic cylinder which drives booms, and attempts a theoretical approach for the numerical analysis for its stick-slip condition.

  • PDF

Modelling and Development of Control Algorithm of Endoscopy

  • Ma, Weichao;Lee, Sanghyuk
    • 중소기업융합학회논문지
    • /
    • 제4권2호
    • /
    • pp.33-39
    • /
    • 2014
  • 본 논문에서는 효율적인 제어를 위하여 캡슐 앤도스코피에 대한 모델링을 실시하였다. 방법론적으로 루그레 모델에 대한 시스템 특성파악을 위한 수학적 모델링을 이용하였다. 비선형 마찰 모델인 루그레 모델에 바탕을 둔 stick-slip 모션 시스템이 인체내에서의 캡슐 앤도스코피의 활동을 묘사하는 시뮬레이션 모델로 이용하였다. 다양한 상황을 고려하여 루그레 마찰모델에 대한 시뮬레이션을 Matlab Simulink 를 작성하여 수행하였다. 전체적인 모션과 파라미터의 영향이 엔도스코피의 속도에 미치는 영향에 대한 것에 주안을 두어 실시하였다.

  • PDF

화학기계적 연마(CMP) 공정에서의 트라이볼로지 연구 동향 (Tribology Research Trends in Chemical Mechanical Polishing (CMP) Process)

  • 이현섭
    • Tribology and Lubricants
    • /
    • 제34권3호
    • /
    • pp.115-122
    • /
    • 2018
  • Chemical mechanical polishing (CMP) is a hybrid processing method in which the surface of a wafer is planarized by chemical and mechanical material removal. Since mechanical material removal in CMP is caused by the rolling or sliding of abrasive particles, interfacial friction during processing greatly influences the CMP results. In this paper, the trend of tribology research on CMP process is discussed. First, various friction force monitoring methods are introduced, and three elements in the CMP tribo-system are defined based on the material removal mechanism of the CMP process. Tribological studies on the CMP process include studies of interfacial friction due to changes in consumables such as slurry and polishing pad, modeling of material removal rate using contact mechanics, and stick-slip friction and scratches. The real area of contact (RCA) between the polishing pad and wafer also has a significant influence on the polishing result in the CMP process, and many researchers have studied RCA control and prediction. Despite the fact that the CMP process is a hybrid process using chemical reactions and mechanical material removal, tribological studies to date have yet to clarify the effects of chemical reactions on interfacial friction. In addition, it is necessary to clarify the relationship between the interface friction phenomenon and physical surface defects in CMP, and the cause of their occurrence.

미세입자의 트라이볼로지적 응용을 위한 마찰특성 고찰 (Study on the Frictional Characteristics of Micro-particles for Tribological Application)

  • 성인하;한흥구;공호성
    • Tribology and Lubricants
    • /
    • 제25권2호
    • /
    • pp.81-85
    • /
    • 2009
  • Interests in micro/nano-particles have been greatly increasing due to their wide applications in various fields such as environmental and medical sciences as well as engineering. In order to obtain a fundamental understanding of the tribological characteristics at particle-surface contact interface, frictional behaviors according to load/pressure and materials were obtained by using atomic force microscope(AFM) cantilevers with different stiffnesses and tips. Lateral contact stiffnesses were observed in various tip-surface contact situations. Experimental results show that stick-slip friction behavior occurs even when the colloidal probes with a particle of a few micrometers in diameter, which have a relatively large contact area and lack a well-shaped apex, were used. This indicates that atomic stick-slip friction may be a more common phenomenon than it is currently thought to be. Also, experimental results were investigated by considering the competition between the stiffness of the interatomic potential across the interface and the elastic stiffnesses of the contacting materials and the force sensor itself.

FRICTION CHARACTERISTICS OF A PAPER-BASED FRICTION MATERIAL

  • Gao, H.;Barber, G.-C.;Chu, H.
    • International Journal of Automotive Technology
    • /
    • 제3권4호
    • /
    • pp.171-176
    • /
    • 2002
  • A bench test set-up is employed to simulate the friction characteristics of a paper-based friction material operating against a steel plate. Dry friction tests are run as well as tests with transmission fluids. Glazed friction material produces a negative coefficient of friction versus sliding velocity (f-v) curve for both dry friction and lubrication with transmission fluids. At low sliding speeds, the coefficient of friction when operating in transmission fluids for glazed friction materials is greater than that under dry friction. An appreciable negative f-v slope occurs at low sliding speeds for glazed friction materials when running with the transmission fluid. The friction material after running in produces a constant f-v curve under dry friction and a negative slope when lubricated with transmission fluid. At low sliding speeds, the coefficient of friction of the run-in friction material is lower than that of the glazed wet material. On the other hand, the run-in friction material has a larger friction coefficient than does the glazed friction material at higher sliding speeds.

견실한 비선형 마찰보상 이산제어 - 이론 (Robust Digital Nonlinear Friction Compensation - Theory)

  • 강민식;김창제
    • 한국정밀공학회지
    • /
    • 제14권4호
    • /
    • pp.88-96
    • /
    • 1997
  • This paper suggests a new non-linear friction compensation for digital control systems. This control adopts a hysteresis nonlinear element which can introduce the phase lead of the control system to compensate the phase delay comes from the inherent time delay of a digital control. A proper Lyapunov function is selected and the Lyapunov direct method is used to prove the asymptotic stability of the suggested control.

  • PDF