DOI QR코드

DOI QR Code

Study on the Frictional Characteristics of Micro-particles for Tribological Application

미세입자의 트라이볼로지적 응용을 위한 마찰특성 고찰

  • Sung, In-Ha (Dept. of Mechanical Engineering, Hannam University) ;
  • Han, Hung-Gu (Energy Mechanics Research Center, Korea Institute of Science and Technology) ;
  • Kong, Ho-Sung (Energy Mechanics Research Center, Korea Institute of Science and Technology)
  • 성인하 (한남대학교 기계공학과) ;
  • 한흥구 (한국과학기술연구원 에너지메카닉스 연구센터) ;
  • 공호성 (한국과학기술연구원 에너지메카닉스 연구센터)
  • Published : 2009.04.30

Abstract

Interests in micro/nano-particles have been greatly increasing due to their wide applications in various fields such as environmental and medical sciences as well as engineering. In order to obtain a fundamental understanding of the tribological characteristics at particle-surface contact interface, frictional behaviors according to load/pressure and materials were obtained by using atomic force microscope(AFM) cantilevers with different stiffnesses and tips. Lateral contact stiffnesses were observed in various tip-surface contact situations. Experimental results show that stick-slip friction behavior occurs even when the colloidal probes with a particle of a few micrometers in diameter, which have a relatively large contact area and lack a well-shaped apex, were used. This indicates that atomic stick-slip friction may be a more common phenomenon than it is currently thought to be. Also, experimental results were investigated by considering the competition between the stiffness of the interatomic potential across the interface and the elastic stiffnesses of the contacting materials and the force sensor itself.

Keywords

References

  1. Whitesides, G M. and Grzybowski, B., 'Self-assembly at all scales,' Science, Vol. 295, pp. 2418-2121, 2002 https://doi.org/10.1126/science.1070821
  2. Terray, A., Oakey, J., and Marr D. W. M., 'Microfluidic Control Using Colloidal Devices,' Science, Vol. 296, pp. 1841-1844, 2002 https://doi.org/10.1126/science.1072133
  3. Cook, L. M., 'Chemical processes in glass polishing,' J. Non-Cryst. Solids, Vol. 120, pp. 152-171, 1990 https://doi.org/10.1016/0022-3093(90)90200-6
  4. Mizes, H., Ott, M., Eklund, E., and Hays, D., 'Small particle adhesion: Measurement and control,' Colloids Surf. A, Vol. 165, pp. 11-23, 2000 https://doi.org/10.1016/S0927-7757(99)00442-2
  5. Daniel, S., Chaudhury, M. K., and De Gennes, P.-G, 'Vibration-actuated drop motion on surfaces for batch microfluidic processes,' Langmuir, Vol. 21, pp.4240-4248, 2005 https://doi.org/10.1021/la046886s
  6. Love J. C. et al., 'Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology,' Chem. Rev., Vol. 105, pp. 1103-1170, 2005 https://doi.org/10.1021/cr0300789
  7. Resch, R. et al., 'Manipulation of nanoparticles using dynamic force microscopy: simulation and experiments,' Appl. Phys. A, Vol. 67, pp. 265-271, 1998 https://doi.org/10.1007/s003390050769
  8. Junno, T., Deppert, K., Montelius, L., and Samuelson, L., 'Controlled manipulation of nanoparticles with an atomic force microscope,' Appl. Phys. Lett., Vol. 66, pp. 3627-3629, 1995 https://doi.org/10.1063/1.113809
  9. Baur, C. et al., 'Nanoparticle manipulation by mechanical pushing: underlying phenomena and realtime monitoring,' Nanotechnology, Vol. 9, pp. 360-364, 1998 https://doi.org/10.1088/0957-4484/9/4/011
  10. Resch, R. et al., 'Manipulation of gold nanoparticles in liquid environments using scanning force microscopy,' Ultramicroscopy. Vol. 82, pp. 135-139, 2000 https://doi.org/10.1016/S0304-3991(99)00152-7
  11. J airath, R. et al., 'Consumables for the chemical mechanical polishing (CMP) of dielectrics and conductors,' Mat. Res. Soc. Symp. Proc., Vol. 337, pp.121-131, 1994 https://doi.org/10.1557/PROC-337-121
  12. Oliver, M. (Ed.), Chemical-Mechaηical Planarization of Semiconductor Materials, Chap. SpringerVerlag, Berlin, pp. 6-7, 2004
  13. Stein, D. J., Hetherington, D. L., and Cecchi, J. L., 'Investigation of the Kinetics of Tungsten Chemical Mechanical Polishing in Potassium Iodate-Based Slurries: II. Roles of Colloid Species and Slurry Chemistry,' J Electrochem. Soc., Vol. 146, pp. 1934-1938, 1999 https://doi.org/10.1149/1.1391869
  14. Laursen, T, and Grief, M., 'Characterization and optimization of copper chemical mechanical planarization,' J Electron. Mater., Vol. 31, pp. 1059-1065, 2002 https://doi.org/10.1007/s11664-002-0043-5
  15. Sader, J. E., Chon, J. W. M., Mulvaney, P. , 'Calibration of rectangular atomic force microscope cantilevers', Rev. Sci. Instrum., Vol. 70, pp. 3967-3969, 1999 https://doi.org/10.1063/1.1150021
  16. Green, C. P. et al., 'Normal and torsional spring constants of atomic force microscope cantilevers', Rev. Sci. Instrum., Vol. 75, pp. 1988-1996, 1995 https://doi.org/10.1063/1.1753100
  17. Ogletree, D. F., Carpick, R. w., Sa1meron, M., 'Calibration of frictional forces in atomic force microscopy', Rev. Sci. Instrum., Vol. 67, pp. 3298-3306, 1996 https://doi.org/10.1063/1.1147411
  18. Morita, S., Fujisawa, S., Sugawara, Y., 'Spatially quantized friction with a lattice periodicity', Surf Sci. Rep. Vol. 23, pp. 1-41 , 1996 https://doi.org/10.1016/0167-5729(95)00009-7
  19. F내 isawa, S., Kishi, E., Sugawara, Y., Morita, S., 'Two-dimensionally discrete friction on the NaF(lOO) surface with the lattice periodicity', Nanotechnol., Vol. 5, pp. 8-11, 1994
  20. Germann, G. J. et al., 'Atomic scale friction of a diamond tip on diamond (100) and (111) surfaces' J Appl. Phys., Vol. 73, pp. 163-167, 1993 https://doi.org/10.1063/1.353878
  21. Holscher, H., Schwarz, U. D., Wiesendanger, R., 'Modeling of the scan process in lateral force microscopy', Surf Sci., Vol. 375, pp. 395-402, 1997 https://doi.org/10.1016/S0039-6028(96)01285-X
  22. Socoliuc, A., Bennewitz, R., Gnecco, E., Meyer E., 'Transition from stick-slip to continuous sliding in atomic friction: entering a new regime of ultralow friction', Phys. Rev. Lett., Vol. 92, Art. No.134301, 2004 https://doi.org/10.1103/PhysRevLett.92.134301

Cited by

  1. Ti-계 코팅이 SCM415강의 마찰.마모 특성에 미치는 영향 vol.26, pp.3, 2009, https://doi.org/10.9725/kstle.2010.26.3.162