DOI QR코드

DOI QR Code

Tribology Research Trends in Chemical Mechanical Polishing (CMP) Process

화학기계적 연마(CMP) 공정에서의 트라이볼로지 연구 동향

  • Lee, Hyunseop (School of Mechanical Engineering, Tongmyong University)
  • 이현섭 (동명대학교 기계공학부)
  • Received : 2018.04.21
  • Accepted : 2018.05.16
  • Published : 2018.06.30

Abstract

Chemical mechanical polishing (CMP) is a hybrid processing method in which the surface of a wafer is planarized by chemical and mechanical material removal. Since mechanical material removal in CMP is caused by the rolling or sliding of abrasive particles, interfacial friction during processing greatly influences the CMP results. In this paper, the trend of tribology research on CMP process is discussed. First, various friction force monitoring methods are introduced, and three elements in the CMP tribo-system are defined based on the material removal mechanism of the CMP process. Tribological studies on the CMP process include studies of interfacial friction due to changes in consumables such as slurry and polishing pad, modeling of material removal rate using contact mechanics, and stick-slip friction and scratches. The real area of contact (RCA) between the polishing pad and wafer also has a significant influence on the polishing result in the CMP process, and many researchers have studied RCA control and prediction. Despite the fact that the CMP process is a hybrid process using chemical reactions and mechanical material removal, tribological studies to date have yet to clarify the effects of chemical reactions on interfacial friction. In addition, it is necessary to clarify the relationship between the interface friction phenomenon and physical surface defects in CMP, and the cause of their occurrence.

Keywords

References

  1. Ko, B. G., Yoo, H. C., Park, J. G., "Effects of pattern density on CMP removal rate and uniformity", J. Kor, Phys. Soc., Vol. 39, pp. S318-S321, 2001.
  2. Lee, H., Park, Y., Lee, S., Jeong, H., "Effect of wafer size on material removal rate and its distribution in chemical mechanical polishing of silicon dioxide film", J. Mech. Sci. Technol., Vol. 27, No. 10, pp. 2911-2916, 2013. https://doi.org/10.1007/s12206-013-0802-7
  3. Nanz, G., Camilletti, L. E., "Modeling of chemical-mechanical polishing: A review", IEEE Trans. Semicon. Manufact., Vol. 8, No. 4, pp. 382-389, 1995. https://doi.org/10.1109/66.475179
  4. Lee, H. S., Jeong, H. D., "Chemical and mechanical balance in polishing of electronic materials for defect-free surfaces," CIRP Ann. Manufact. Technol., Vol. 58, pp. 485-490, 2009. https://doi.org/10.1016/j.cirp.2009.03.115
  5. Lee, D., Lee, H., Jeong, H., "Slurry components in metal Chemical Mechanical Planarization (CMP) Process: A review," Int. J. Precis. Eng. Manufact., Vol. 17, No. 12, pp. 1751-1762, 2016. https://doi.org/10.1007/s12541-016-0201-y
  6. Lee, H., Lee, D., Jeong, H., "Mechanical aspects of the chemical mechanical polishing process: A review", Int. J. Precis. Eng. Manufact., Vol. 17, No. 4, pp. 525-536, 2016. https://doi.org/10.1007/s12541-016-0066-0
  7. Hayashi, S., Koga, T., Goorsky, M. S., "Chemical mechanical polishing of GaN", J. Electrochem. Soc., Vol. 155, No. 2, pp. H113-H116, 2008. https://doi.org/10.1149/1.2818776
  8. Lu, H., Obeng, Y., Richardson, K. A., "Applicability of dynamic mechanical analysis for CMP polyurethane pad studies", Mater. Charact., Vol. 49, Issue 2, pp. 177-186, 2002. https://doi.org/10.1016/S1044-5803(03)00004-4
  9. Park, B., Lee, H., Kim, H., Seo, H., Kim, G., Jeong, H., "Characteristics of friction affecting CMP results", J. Korean Inst. Electr. Electron. Mater. Eng., Vol. 17, No. 10, pp. 1041-1048, 2004. https://doi.org/10.4313/JKEM.2004.17.10.1041
  10. Bahr, M., Sampurno, Y., Han, R., Phillipossian, A., "Improvements in stribeck curves for copper and tungsten chemical mechanical planarization on soft pads", ECS J. Solid State Sci. Technol., Vol. 6, No. 5, pp. P290-P295, 2017. https://doi.org/10.1149/2.0241705jss
  11. Lee, H. S., Park, B. Y., Park, S. M., Kim, H. J., Jeong, H. D., "The characteristics of frictional behavior in CMP Using an integrated monitoring system", Key Eng. Mater., Vol. 339, pp. 152-157, 2007. https://doi.org/10.4028/www.scientific.net/KEM.339.152
  12. Scarfo, A. M., Manno, V. P., Rogers, C. B., Anjur, S. P., Moinpour, M., "In situ measurement of pressure and friction during CMP of Contoured Wafers", J. Electrochem. Soc., Vol. 152, No. 6, pp. G477-G481, 2005. https://doi.org/10.1149/1.1904923
  13. Hocheng, H., Huang, Y. L., "A comprehensive review of end point detection in chemical mechanical polishing for deep-submicron integrated circuits manufacturing", Int. J. Mater. Prod. Technol., Vol. 18, Issue 4-6, pp. 1-18, 2003. https://doi.org/10.1504/IJMPT.2003.003583
  14. Lee, H., Park, B., Kim, G., Kim, H., Seo, H., Jeong, H., "Effect of friction energy on polishing results in CMP process", Trans. Korean Soc. Mech. Eng. A., Vol. 28, No. 11, pp. 1807-1812, 2004. https://doi.org/10.3795/KSME-A.2004.28.11.1807
  15. Kim, G., Kim, H., Park, B., Park, K., Jeong, H., "Effect of abrasive particles on frictional force and abrasion in Chemical Mechanical Polishing (CMP)," J. Korean Inst. Electr. Electron. Mater. Eng., Vol. 17, No. 10, pp. 1049-1055, 2004. https://doi.org/10.4313/JKEM.2004.17.10.1049
  16. Kim, H. J., A Study on the Interfacial Characteristics and Its Effect on Material Removal in CMP, Doctoral Thesis, Department of Mechanical Engineering, Pusan National University, Korea, 2004.
  17. Choi, W., Abiade, J., Lee, S. M., Singh, R. K., "Effects of slurry particles on silicon dioxide CMP", J. Electrochem. Soc., Vol. 151, No. 8, pp. G512-G522, 2004. https://doi.org/10.1149/1.1768133
  18. Luo, J., Dornfeld, D. A., "Effects of abrasive size distribution in chemical mechanical planarization: modeling and verification", IEEE Trans. Semicon. Manufact., Vol. 16, No. 3, pp. 469-476.
  19. Lee, H. S., Jeong, H. D., Dornfeld, D. A., "Semi-empirical material removal rate distribution model for $SiO_2$ Chemical Mechanical Polishing (CMP) processes", Precis. Eng., Vol. 37, pp. 483-490, 2013. https://doi.org/10.1016/j.precisioneng.2012.12.006
  20. Lee, H., Lee, S., "Investigation of pad wear in CMP with swing-arm conditioning and uniformity of material removal," Precis. Eng., Vol. 49, pp. 85-91, 2017. https://doi.org/10.1016/j.precisioneng.2017.01.015
  21. Park, K., Jeong, H., "Investigation of pad surface topography distribution for material removal uniformity in CMP process", J. Electrochem. Soc., Vol. 155, No. 8, pp. H595-H602, 2008. https://doi.org/10.1149/1.2938378
  22. Johnson, K. L., Contact Mechanics, Cambridge University Press, Cambridge, 1985.
  23. Qin, K., Moudgil, B., Park, C. W., "A chemical mechanical polishing model incorporating both the chemical and mechanical effects", Thin Solid Films, Vol. 446, pp. 277-286, 2004. https://doi.org/10.1016/j.tsf.2003.09.060
  24. Jeong, H., Lee, H., Choi, S., Lee, Y., Jeong, H., "Prediction of real contact area from microtopography on CMP pad", J. Adv. Mech. Des. Sys. Manufact., Vol. 6, No. 1, pp. 113-120, 2012. https://doi.org/10.1299/jamdsm.6.113
  25. Yeruva, S. B., Park, C.-W., Rabinovich, Y. I., Moudgil, B. M., "Impact of Pad-Wafer contact area in chemical mechanical polishing", J. Electrochem. Soc., Vol. 156, No. 10, pp. D408-D412, 2009. https://doi.org/10.1149/1.3186032
  26. Kim, H. J., Yang, J. C., Yoon, B. U., Lee, H. D., Kim, T., "Nano-Scale stick-slip friction model for the chatter scratch generated by chemical mechanical polishing process", J. Nanosci. Nanotechnol., Vol. 12, pp. 5683-5686, 2012. https://doi.org/10.1166/jnn.2012.6389
  27. Lee, H., Park, B., Seo, H., Park, K., Jeong, H., "A Study on the Characteristics of Stick-Slip Friction in CMP," J. Korean Inst. Electr. Electron. Mater. Eng., Vol. 18, No. 4, pp. 313-320, 2005. https://doi.org/10.4313/JKEM.2005.18.4.313
  28. Jung, S., Sung, I. H., "Observation on the relationship between surface defects and stick-slip friction in chemical-mechanical polishing", Proc. of the KSTLE, Jeju, Korea, September, 2012.

Cited by

  1. 랩그라인딩 후 사파이어 웨이퍼의 표면거칠기가 화학기계적 연마에 미치는 영향 vol.35, pp.6, 2018, https://doi.org/10.9725/kts.2019.35.6.323
  2. CMP 컨디셔너의 다이아몬드 입자 모양이 연마 패드 표면 형상 제어에 미치는 영향 vol.35, pp.6, 2018, https://doi.org/10.9725/kts.2019.35.6.330
  3. 전해 이온화와 자외선광을 이용한 사파이어 화학기계적 연마의 재료제거 효율 향상에 관한 기초 연구 vol.37, pp.6, 2021, https://doi.org/10.9725/kts.2021.37.6.208
  4. 전기화학-기계적 평탄화에 관한 연구 동향 분석 vol.37, pp.6, 2018, https://doi.org/10.9725/kts.2021.37.6.213