• Title/Summary/Keyword: Statistical network analysis

Search Result 752, Processing Time 0.023 seconds

Social Network Analysis and Its Applications for Authors and Keywords in the JKSS

  • Kim, Jong-Goen;Choi, Soon-Kuek;Choi, Yong-Seok
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.4
    • /
    • pp.547-558
    • /
    • 2012
  • Social network analysis is a graphical technique to search the relationships and characteristics of nodes (people, companies, and organizations) and an important node for positioning a visualized social network figure; however, it is difficult to characterize nodes in a social network figure. Therefore, their relationships and characteristics could be presented through an application of correspondence analysis to an affiliation matrix that is a type of similarity matrix between nodes. In this study, we provide the relationships and characteristics around authors and keywords in the JKSS(Journal of the Korean Statistical Society) of the Korean Statistical Society through the use of social network analysis and correspondence analysis.

Statistical network analysis for epilepsy MEG data

  • Haeji Lee;Chun Kee Chung;Jaehee Kim
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.6
    • /
    • pp.561-575
    • /
    • 2023
  • Brain network analysis has attracted the interest of neuroscience researchers in studying brain diseases. Magnetoencephalography (MEG) is especially proper for analyzing functional connectivity due to high temporal and spatial resolution. The application of graph theory for functional connectivity analysis has been studied widely, but research on network modeling for MEG still needs more. Temporal exponential random graph model (TERGM) considers temporal dependencies of networks. We performed the brain network analysis, including static/temporal network statistics, on two groups of epilepsy patients who removed the left (LT) or right (RT) part of the brain and healthy controls. We investigate network differences using Multiset canonical correlation analysis (MCCA) and TERGM between epilepsy patients and healthy controls (HC). The brain network of healthy controls had fewer temporal changes than patient groups. As a result of TERGM, on the simulation networks, LT and RT had less stable state than HC in the network connectivity structure. HC had a stable state of the brain network.

Acoustic Impulse Method with Neural Network for Detection of Cracks in Eggshell (음향충격법과 인공신경망에 의한 파란 검출)

  • 최완규;조한근;백진하;장영창
    • Journal of Biosystems Engineering
    • /
    • v.23 no.6
    • /
    • pp.621-628
    • /
    • 1998
  • In order to develop an inspection algorithm for an automatic eggshell inspection system, acoustic impulse response with neural network method was studied. An improved error backpropagation algorithm was selected as a loaming rule of neural network, and three layer network was chosen for the neural network architecture. Acoustic signals in time domain and theirs power spectrum were studied as the input to the neural network. The classification feasibility and success rate were investigated in terms of statistical analysis and neural network approach. As a result, the success rate was 95% with the statistical model having five independent variables. Among the neural network models studied, the power spectrum of acoustic signal as the input with 64 input neurons and the two impact data showed the success rate of 95.5% which was slightly higher than of statistical analysis.

  • PDF

Local Centers of the Social Network

  • Huh, Myung-Hoe
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.2
    • /
    • pp.213-217
    • /
    • 2011
  • For the social network of n nodes, one might be interested in finding k nodes to disseminate the information as quickly as possible or to identify key nodes of high "local centrality". I propose two algorithms for determining k "local centers" of the network and work on a real case.

Application of Statistical Models for Default Probability of Loans in Mortgage Companies

  • Jung, Jin-Whan
    • Communications for Statistical Applications and Methods
    • /
    • v.7 no.2
    • /
    • pp.605-616
    • /
    • 2000
  • Three primary interests frequently raised by mortgage companies are introduced and the corresponding statistical approaches for the default probability in mortgage companies are examined. Statistical models considered in this paper are time series, logistic regression, decision tree, neural network, and discrete time models. Usage of the models is illustrated using an artificially modified data set and the corresponding models are evaluated in appropriate manners.

  • PDF

The comparison of coauthor networks of two statistical journals of the Korean Statistical Society using social network analysis (소셜 네트워크분석을 활용한 통계학회 논문집과 응용통계연구 공저자 네트워크 비교)

  • Chun, Heuiju
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.2
    • /
    • pp.335-346
    • /
    • 2015
  • The purpose of this study is to compare not only network influence of individual coauthor but also the types and properties of two coauthor networks of Communications for Statistical Applications and Methods and the Korean Journal of Applied Statistics which are published by the Korean Statistical Society using social network analysis.As the result of two network structure comparison, density, inclusiveness, reciprocity and clustering coefficient which represent the type of coauthor networks show almost similar values and the Korean Journal of Applied Statistics has bigger values in average degree, average distance and diameter because it has more nodes than Communications for Statistical Applications and Methods. Finally two journals have very similar type of coauthor network. In the comparison of network centrality of two coauthor networks, closeness centrality and betweenness centrality of the Korean Journal of Applied Statistics are bigger than those of Communications for Statistical Applications and Methods at the statistical significance level 0.05. The coauthor network of the Korean Journal of Applied Statistics has faster information delivery and stronger betweenness than that of Communications for Statistical Applications.

Development of Discriminant Analysis System by Graphical User Interface of Visual Basic

  • Lee, Yong-Kyun;Shin, Young-Jae;Cha, Kyung-Joon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.2
    • /
    • pp.447-456
    • /
    • 2007
  • Recently, the multivariate statistical analysis has been used to analyze meaningful information for various data. In this paper, we develope the multivariate statistical analysis system combined with Fisher discriminant analysis, logistic regression, neural network, and decision tree using visual basic 6.0.

  • PDF

Detection of Main Spindle Bearing Defects in Machine Tool by Acoustic Emission Signal via Neural Network Methodology (AE 신호 및 신경회로망을 이용한 공작기계 주축용 베어링 결함검출)

  • 정의식
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.4
    • /
    • pp.46-53
    • /
    • 1997
  • This paper presents a method of detection localized defects on tapered roller bearing in main spindle of machine tool system. The feature vectors, i.e. statistical parameters, in time-domain analysis technique have been calculated to extract useful features from acoustic emission signals. These feature vectors are used as the input feature of an neural network to classify and detect bearing defects. As a results, the detection of bearing defect conditions could be sucessfully performed by using an neural network with statistical parameters of acoustic emission signals.

  • PDF

Simulation and Analysis of a Gas Pipeline Network in Kyungin Area using Statistical Approach (경인지역 가스 수송을 위한 배관망시스템의 모사 및 분석)

  • Lee Eun-Lyong;Chang Seung-Yong;Kim In-Won
    • Journal of the Korean Institute of Gas
    • /
    • v.1 no.1
    • /
    • pp.14-20
    • /
    • 1997
  • Pipeline network analysis requires fluid mechanics. A lot of equations have been used for flow analysis according to the behavior of fluid in pipelines and the operative situations. In this paper, simulation and analysis have been performed for the pipeline network system in Kyungin area using a steady-state mathematical model. Then, a statistical model using partial least squares(PLS) method has been developed with the data obtained from the developed mathematical model. The results showed that it is possible to simulate and analyze pipeline network systems using statistical approach.

  • PDF

A Model to Calibrate Expressway Traffic Forecasting Errors Considering Socioeconomic Characteristics and Road Network Structure (사회경제적 특성과 도로망구조를 고려한 고속도로 교통량 예측 오차 보정모형)

  • Yi, Yongju;Kim, Youngsun;Yu, Jeong Whon
    • International Journal of Highway Engineering
    • /
    • v.15 no.3
    • /
    • pp.93-101
    • /
    • 2013
  • PURPOSES : This study is to investigate the relationship of socioeconomic characteristics and road network structure with traffic growth patterns. The findings is to be used to tweak traffic forecast provided by traditional four step process using relevant socioeconomic and road network data. METHODS: Comprehensive statistical analysis is used to identify key explanatory variables using historical observations on traffic forecast, actual traffic counts and surrounding environments. Based on statistical results, a multiple regression model is developed to predict the effects of socioeconomic and road network attributes on traffic growth patterns. The validation of the proposed model is also performed using a different set of historical data. RESULTS : The statistical analysis results indicate that several socioeconomic characteristics and road network structure cleary affect the tendency of over- and under-estimation of road traffics. Among them, land use is a key factor which is revealed by a factor that traffic forecast for urban road tends to be under-estimated while rural road traffic prediction is generally over-estimated. The model application suggests that tweaking the traffic forecast using the proposed model can reduce the discrepancies between the predicted and actual traffic counts from 30.4% to 21.9%. CONCLUSIONS : Prediction of road traffic growth patterns based on surrounding socioeconomic and road network attributes can help develop the optimal strategy of road construction plan by enhancing reliability of traffic forecast as well as tendency of traffic growth.