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Abstract
Brain network analysis has attracted the interest of neuroscience researchers in studying brain diseases. Mag-

netoencephalography (MEG) is especially proper for analyzing functional connectivity due to high temporal
and spatial resolution. The application of graph theory for functional connectivity analysis has been studied
widely, but research on network modeling for MEG still needs more. Temporal exponential random graph model
(TERGM) considers temporal dependencies of networks. We performed the brain network analysis, including
static/temporal network statistics, on two groups of epilepsy patients who removed the left (LT) or right (RT) part
of the brain and healthy controls. We investigate network differences using Multiset canonical correlation anal-
ysis (MCCA) and TERGM between epilepsy patients and healthy controls (HC). The brain network of healthy
controls had fewer temporal changes than patient groups. As a result of TERGM, on the simulation networks,
LT and RT had less stable state than HC in the network connectivity structure. HC had a stable state of the brain
network.
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1. Introduction

The brain is an essential organ in our body that controls brain activities such as emotion and mem-
ory. The brain maintains human life activities by constructing a complex neural network between
neurons and communicating with the brain electrical signals. The graph theory of neuroscience can
provide valuable insights into the structural and functional organization of neural networks. Due to the
brain’s structural and functional systems as complex networks, the quantitative analysis of complex
networks, based largely on graph theory, has been rapidly increasingly translated to studies of brain
network organization as a characteristic of brain disease (Bullmore and Sporns, 2009). Magnetoen-
cephalography (MEG) is a non-invasive method that records neuronal activity with several sensors
(Mandal et al., 2018). Especially considering the high spatial-temporal resolution, MEG is also used
to diagnose epilepsy, including detecting and forecasting seizures.

The brain works cooperatively by connecting different areas through interaction with brain elec-
trical signals. Therefore, analyzing brain connectivity is important for investigating brain activities.
The definition of connection or edges based on empirical data is a key issue for brain connectivity.
Weighted connection estimates from inherently noisy data might provide false positive connections
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in the network. Furthermore, comparing networks with differences in mean connection weights intro-
duces possible bias since thresholding influences graph measurements such as clustering coefficient
(van Wijk et al., 2010).

For estimating functional connectivity (FC), Jin et al. (2015) use mutual information, and van
Dellen et al. (2012) use the phase lag index to estimate functional connectivity. Coherence and phase
locking value (PLV) are also suggested for FC (Mandal et al., 2018). Coherence is the frequency
domain function mathematically equivalent to the time domain cross-correlation. We can analyze
functional brain connectivity by network analysis since the connections between brain regions can be
regarded as a network. MEG has high temporal and spatial resolution and is measured simultaneously
on multiple channels over time, so it is suitable for brain connectivity analysis (Zhang et al., 2014).

Network statistics provide information about network status and dynamics. Hub nodes selected
by comparing betweenness centrality are compared between patients and healthy controls (Jin et al.,
2015). Network measures such as clustering coefficient and path length are compared between patient
groups with different glioma grades (van Dellen et al., 2012). Mandal et al. (2018) suggested using
network statistics such as eigenvector centrality, clustering coefficient, and path length to get infor-
mation related to in-depth brain functioning. Thompson et al. (2017) incorporated temporal network
statistics such as temporal network centrality, fluctuability, and volatility to analyze functional brain
connectivity.

Network modeling is also an active research topic including minimum-spanning tree (van Dellen
et al., 2014), and temporal exponential random graph models (Simpson et al., 2013). There are
more dynamic network models. Separable temporal ERGM (STERGM) is an extension of ERGM
for discrete-time dynamic networks consisting of two models: Formation network and dissolution
network (Krivitsky and Handcock, 2014). Varying coefficient ERGM (VCERGM) is the model that
more efficiently characterizes the effects of temporal heterogeneity and subgraph properties (Lee et
al., 2020). Relation event model (REM) can handle time-clustered dynamic networks (Fritz et al.,
2020). Such models can be used for modeling dynamic networks.

MEG is used for basic and diagnostic research on brain diseases through network comparison and
connectivity analysis between patients and healthy controls (van Straaten and Stam, 2013). How-
ever, there is not much research on temporal network modeling for MEG, and there still needs to be
more studied, incorporating space-time factors. The motivation of the study is to provide temporal
MEG connectivity models for epilepsy group comparison that can help identify groups and diagnos-
tic biomarkers for epilepsy. In this study, We compare three groups via MEG brain networks by
static/temporal network statistics, multiset canonical correlation analysis (MCCA) to get a represen-
tative of each group, and temporal exponential random graph models (TERGM).

2. Materials and methods

2.1. Materials
2.1.1. Epilepsy MEG data

The MEG data came from Seoul national university hospital. The dataset contained data from 44
mesial temporal lobe epilepsy (mTLE) with hippocampal sclerosis (HS) patients who underwent
epilepsy surgery between 2005 and 2011 and 46 health controls (HC). The mTLE patients have post-
surgical seizure freedom, patient population homogeneity is obtained in terms of the main pathology
and surgical outcome (Jin et al., 2015). Twenty-two patients removed the left part of the brain (LT),
and the other removed the right part of the brain (RT). Forty-six age-matched right-handed healthy
controls voluntarily participated in the study. Table 1 provides patient demographic data.
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Table 1: Frequency table of subjects per group

LT (n = 22) RT (n = 22) HC (n = 46)
Male 10 7 19

Female 12 15 27
Mean age 31 32 29

Duration of epilepsy (year) 21 18 n.a.

n.a. : not applicable

Figure 1: Location of ROI nodes.

For MEG recordings, a 306-channel whole-head system was used with MEG sensors arranged
to consist of two orthogonal planar gradiometers and one magnetometer (Jin et al., 2015). MEG
recordings were obtained in a magnetically shielded room at a sampling frequency of 600.615 Hz.
For records of twenty-six people sampled at 1,200 Hz, only odd time-points are extracted and used
for analysis. All records were collected while subjects were lying or sitting with the resting-state
signals. Each subject was instructed to remain relaxed and asked to avoid thinking about anything
during the recording.

2.1.2. Network analysis

Epilepsy is commonly considered an archetypical network disease affecting structural and functional
connectivity with seizures and interactions consistently generated and spreading in networks involving
one or both hemispheres. The predefined 72 nodes (36 nodes in each hemisphere) comprise a set of 2
central, 12 frontal, 4 temporal, 5 parietal, 7 occipital, and 6 limbic regions in each hemisphere. These
nodes were selected from the automated anatomic labeling (AAL) atlas. The location of the nodes is
in Figure 1. The AAL atlas is used for anatomical parcellation of the brain (Tzourio-Mazoyer et al.,
2002). and has been used and defined brain network nodes with fMRI (He et al., 2009; Liao et al.,
2010) and MEG (Jin et al., 2015). Reconstruction of source waveforms at 72 nodes was performed
with programs such as BESA 2000 software (MEGIS Software, Gräfelfing, Germany).

For our analysis, the data is divided into six accumulated parts according to time. The accumulated
time-points of every data except 5 data are considered at 5,000, 10,000, 15,000, 20,000, 25,000, and
30,000.
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2.2. Methods
2.2.1. Functional connectivity

The brain has a complexly connected structure of different neurons. Thus, the brain’s connectivity
plays a role in determining brain network characteristics. Functional connectivity analysis can reveal
the patterns of brain connectivity in certain diseases such as epilepsy (van Diessen et al., 2013). To
construct a brain network, estimating the brain’s connectivity is required.

Functional connectivity is defined as a statistically significant temporal correlation between neu-
rophysiological signals of different spatially separated nerve cells (Friston et al., 1993; Kim, 2022).
Functional connectivity can be estimated through the Pearson correlation coefficient, partial correla-
tion coefficient, coherence function, and mutual information (Simpson et al., 2013). In this work,
Pearson correlation coefficients for data are used as functional connectivity to consider the time-
dependent changes in connections between neurons.

2.2.2. Basic network measures

Brain networks deal with the modular and hierarchical nature of brain activities with the hub regions
of the brain (Bassett and Bullmore, 2009; Bullmore and Sporns, 2009). Graph and modern network
theory applied to FC values of connectivity matrix has been used to find out the framework of brain
topology. In order to capture the most significant connections within a graph, the application of
statistical thresholding schemes and selection of appropriate filtering for meaningful topologies is a
critical step in brain connectivity analysis. Common measures like degree, centrality, and clustering
coefficient intramodular connectivity can be utilized for MEG based network analysis. “Hub” is
defined as a network node (brain region of interest) that plays an important role with the specific
property of having a high centrality.

The degree of a node, a basic measure of the network, is the number of edges. Nodes with a high
degree can be regarded as important nodes in the network.

Centrality represents how central each node is to the entire network. Betweenness centrality mea-
sures how much one node acts as a bridge to another. If the betweenness centrality of the node is high,
the node acts as a bridge to another node.

Eigenvector centrality measures centrality with weights using the adjacency matrix’s eigenvector.
It is useful for finding the most powerful node in the network.

Density indicates the degree of connections between nodes. It has a value between 0 and 1. If the
density is close to 1, the network has many connections between nodes. It can compute by dividing
actual degrees by the number of all connectable edges.

The participation coefficient measures the distribution of edges among the clusters in the graph.
If the node’s edges are only in its cluster, the participation coefficient is 0. The node with high
participation coefficient is called the “connector” hub (Power et al., 2013), which connects clusters.

2.2.3. Temporal network measures

Temporal network measures can be defined by extending the definitions and logic of static network
theory (Thompson et al., 2017). The temporal network graph is defined with nodes, edges, and an
additional dimension of time information such as

G = (V, E,D) , (2.1)

where G is a graph, V is a set of n nodes, E is a set of edges and D is a set of additional dimension of
graph. In a temporal network, D is a set of time-points. Time-varying brain functional connectivity is
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an inherently temporal network involving dynamic fluctuation. The connectivity matrix at each time-
point t is referred to as a graphlet or a snapshot representation (Thompson and Fransson, 2015). Each
t-graphlet is a part with temporal information of the entire network. Once the t-graphlets are derived,
various temporal network measures can be implemented for the characteristics of the temporal flow
of information through the network.

To derive the temporal properties at the global level, we consider global measures such as fluctu-
ability, volatility, and temporal efficiency. As a global state of a temporal network, fluctuability can
quantify the temporal variability of connectivity and the temporal diversity of edges providing how
connectivity patterns within the network fluctuate across time. The lower the fluctuability, the less the
edge changes across time. As a possible measure of temporal order, volatility indicates how volatile
the temporal network is over time. Temporal efficiency measures the efficiency of temporal informa-
tion exchange as the inverse of the average shortest path of all nodes. We referred to Thompson et al.
(2017) temporal network statistics.

2.2.4. MCCA

Canonical correlation analysis (CCA) is a powerful multivariate tool to jointly investigate relation-
ships among multiple data sets. CCA can identify the source of common statistical variations among
multiple modalities and link multiple modal data without assuming any particular form which suits
neuroscience applications. Multiset canonical correlation analysis (MCCA), the extension of CCA, is
a method that finds linear relationships between more than two groups of variables. In neuroscience
research, MCCA is used to combine multiple brain imaging data and combine multiple subjects’ data
(Zhuang et al., 2020).

Sparse-MCCA finds canonical vectors by penalized matrix decomposition (PMD). PMD is a
method for estimating penalized canonical vectors through computing an approximation. Let X be
a n × p matrix with rank k. Then approximation of X is as follows (Witten et al., 2009):

X̂ =

k∑
i=1

diuiv>i , (2.2)

where ui ∈ Rn and vi ∈ Rp, and di are nonnegative constants. Using PMD, we can estimate ui and vi.
Sparse MCCA can be formulated to optimization the problem as follows. Let X be n × p matrix

composed of the first set of variables and Y denote n × q matrix composed of the remaining set of
variables. X and Y are centered and scaled.

arg max
u,v

u>X>Yv subject to (2.3)

u>u ≤ 1, v>v ≤ 1, P1(u) ≤ c1, P2(v) ≤ c2, d ≥ 0.

Here P1(u), P2(v) are convex penalty function, and > notes transpose, and c1, c2 are upper bound con-
stant of penalty function. Solving the optimization problem (2.3) using PMD, we can obtain canonical
vectors u and v. Sparse-MCCA is good for analyzing more than two modalities and removing non-
informative features (Zhuang et al., 2020). We use sparse MCCA to remove noninformative features
and to combine MEG data across multiple subjects in each group.

2.2.5. TERGM

Exponential random graph model (ERGM) (Robinson et al., 2007) is a representative statistical model
that can analyze variables affecting the connection between nodes in the network. Variables in ERGM
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Figure 2: Density changes over time in group LT (upper), RT (middle), HC (lower).

include not only network structural characteristics but also exogenous factors. ERGM has the follow-
ing form (Leifeld et al., 2018):

P (N, θ) =
exp

(
θ>g(N)

)
c (θ)

, (2.4)

where N is an adjacency matrix, θ is the vector of model coefficients, g(N) is the vector of statistics
such as gwesp (geometrically weighted edgewise shared partnerships), edges, etc., and c(θ) is the nor-
malizing factor. We can compute the maximum pseudo-likelihood estimator or maximum likelihood
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Figure 3: Network example of LT (upper), RT (middle), HC (lower) at t = 30, 000.

estimator using the Markov chain Monte Carlo (MCMC) method to estimate parameters.
TERGM (Hanneke et al., 2010) is the extension of ERGM designed to consider temporal depen-

dence. The model with lag K can be formulated as follows (Leifeld et al., 2018):

P
(
N t | N t−K , . . . ,N t−1, θ

)
=

exp
(
θ>g

(
N t,N t−1, . . . ,N t−K

))
c(θ)

, (2.5)

where K ∈ {0, . . . ,T − 1}, N t is the adjacency matrix at time t, θ is the vector of model coefficients,
g(N t,N t−1, . . . ,N t−K) is the vector of statistics and c(θ) is the normalizing factor. To contain temporal
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Table 2: The static network statistics and Kruskal-Wallis test result

LT RT HC test stat p-value Tukey grouping
Degree 3.69 3.33 4.08 7.7434 0.02082 (LT,RT)/HC

Betweenness centrality 77.42 66.19 58.49 13.187 0.00137 LT/(RT,HC)
Eigenvector centrality 0.14 0.13 0.15 17.522 0.00015 (LT,RT)/HC

Density 0.052 0.047 0.057 7.7434 0.02083 (LT,RT)/HC

Table 3: Hub nodes of groups

Group LT RT HC
Hub node 11,31,71,8 11,71 68,33,3

dependencies, statistics g can include memory terms related to time.

3. Results

3.1. Static network analysis

Functional connectivity is estimated as a network by a correlation matrix of 72 nodes. We determine
to retain the edges which has a strength bigger than a threshold. A threshold can be selected differently
depending on the situation, but an inappropriate threshold can obscure the differences in the network.
There is no gold standard to select the proper threshold, so studies about edge filtering are required.

In this work, we chose the threshold value 0.3 by referring to some literature (Fransson et al.,
2011; Luppi and Stamatakis, 2021) and comparing a temporal measure. The networks of one example
subject per group are shown in Figure 3. The node color indicates the brain regions, the node size
reflects the degree of the corresponding node, and the edge weight reflects the connection strength by
edge thickness.

To identify the network characteristics, we analyzed the connections in each subject. We found
that most nodes had a low degree of 1 or 2, and some had a high degree. We compared the groupwise
network statistics in Table 2 and found hub nodes based on the centrality and participation coefficient
in Table 3.

Since the network characteristic statistics do not satisfy the normality, we compared degree, be-
tweenness centrality (BC), eigenvector centrality (EC), and density by the Kruskal-Wallis (K-W) test
and Tukey multiple comparison tests. The K-W test results provide that the groupwise difference of
each network measures are significant at 0.05 significance level.

The degree of HC was significantly bigger than the degree of patient groups, and the betweenness
centrality of LT was bigger than the other. The healthy control group (HC) also has bigger eigenvector
centrality and density than the patient groups.

Hub nodes are selected by comparing BC, EC, and participation coefficient (PC). BC and EC
were standardized by conversion to a z score, and nodes with z score > 2sd (standard deviation) are
considered as hub nodes. Since a node with a high PC (close to 1) is considered as a “connector hub”
which links nodes across the different clusters (Rubinov and Sporns, 2010; Power et al., 2013), we
selected the nodes with PC > 0.5 to hub nodes. Moreover, we considered the variability of statistics
across time to select hub nodes.

Nodes 3, 8, and 11 are located in the frontal, nodes 31 and 68 are in the temporal pole of the
limbic, and nodes 33 and 71 are located in the limbic. According to the selected hub nodes, nodes 11
and 71 were commonly selected as hub nodes in the two patient groups, unlike healthy controls. We
plot the individual density of each network according to the six time-points in Figure 2. In Figure 2,
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Table 4: The global statistics for temporal network and Kruskal-Wallis test result

LT RT HC test stat p-value Tukey grouping
Fluctuability 0.223 0.230 0.216 6.7643 0.03397 (LT,RT)/HC

Volatility 47.036 44.363 42.4 0.53436 0.07655 .
Temporal efficiency 0.00055 0.00051 0.00060 4.8845 0.08697 .

Table 5: The mean of temporal centrality per group and Kruskal-Wallis test result

LT RT HC test stat p-value Tukey grouping
Temporal betweenness centrality 0.0121 0.0107 0.0116 1.7404 0.4189 .

Temporal degree centrality 0.0625 0.0591 0.0722 9.4835 0.008723 (LT,RT)/HC

each line represents each subject’s density change in each group.

3.2. Temporal network analysis

Adjacency matrices are made binary for dynamic network statistics calculation. The K-W test is
performed to compare groupwise differences in temporal network statistics (Table 4). Fluctuability,
volatility, and temporal efficiency are calculated to compare and investigate the groupwise global
network characteristics. The means of fluctuability and volatility of the HC group has the smallest
value, so the HC has less network change than the patient group (LT & RT). In the K-W test, only the
fluctuability was significant.

To analyze nodal information, we performed the K-W test for temporal degree centrality and
temporal betweenness centrality (Table 5). As a result, the temporal degree centrality was significant
in that HC was bigger than the others. Figure 4 is the boxplot of the node’s temporal betweenness
centrality of each group. Although the group difference is not in temporal betweenness centrality, in
Figure 4, we could find the temporal betweenness centralities of hub nodes are higher than the other
nodes.

3.3. MCCA and TERGM

Before fitting the TERGM, in order to find the group representative, we combined the subject in-
formation at each time-point in each group by sparse-MCCA with the lasso penalty function. For
combining subjects we excluded five subjects with less than 30,000 time-points observed. We fitted
TERGM with the group representatives for LT, RT, and HC resulting estimates in Table 6.

Edges, gwesp, nodecov, nodefactor, nodematch, memory terms are used to fit final TERGM. Edges
and gwesp terms are for network structure. Gwesp means geometrically weighted edgewise shared
partnerships. Gwesp term can identify transitivities of triangular structure that occur between three
nodes. If the coefficient of gwesp is positive, the networks tend to cluster statistically. Transitivity
means if the connection of nodes A and B exists, and nodes B and C are connected, then A and C will
be connected. Thus, Gwesp can evaluate network clustering through triangular structures between
three nodes. Gwesp can be formulated as follows (Dichio and Fallani, 2022):

w = eα
n−2∑
i=1

{
1 −

(
1 − e−α

)i
}

pi, (3.1)

where α is decay parameter, pi is number of pairs with i shared partners. In this work, we used
α = 0.25 as a decay parameter.
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Figure 4: Boxplot of node’s temporal betweenness centrality for LT (upper), RT (middle), HC (lower).

Nodecov, nodefactor, nodematch terms are used as terms of exogenous factors. Nodecov can
identify the effect of numerical variables, and we use the square root of the degree of each node as
nodecov. Nodefactor is for investigating the effect of categorical variables. Nodefactor is contained
to verify the effect on brain regions. Nodematch is the dyadic covariate that measures homophily in a
network based on a categorical variable. We can investigate the effect of a connection between regions
of the same brain region using nodematch.

Also, the stability term of memory term is used to consider the changes across time. The stability
term means whether the previous edge is maintained at the following time-point. The stability term
hm is defined as follows (Leifeld et al., 2018; Obando Forero, 2018):

hm =
∑
i, j

N t
i jN

t−1
i j +

(
1 − N t

i j

) (
1 − N t−1

i j

)
. (3.2)

We consider the lag of the memory term as 1 to identify whether the network at time t is affected by
the network at the previous time. To fit TERGM, we use temporal bootstrap with 100 replication and
maximum pseudo-likelihood. The TERGM parameter estimation result is shown in Table 6.
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Table 6: Fitted TERGMs in each group after MCCA applied

Variable LT RT HC
Estimate Estimate Estimate

Edges −6.51* −10.78* −9.41*
Gwesp 0.94* 0.85* 0.50*

Nodal covariate
(nodefactor, nodecov)

Nodecov 0.53* 0.59* 0.52*
Frontal −0.64* 1.33 1.04
Limbic 0.48* 2.37* 1.39*

Occipital −0.80* 1.82 −0.49
Parietal 0.10 2.18* 0.06

Temporal −0.12 1.87* −0.11

Dyadic covariate
(nodematch)

Central 3.90* 8.76* 3.70*
Frontal 1.48* 1.60* 0.22*
Limbic −0.92* −0.56* −0.15

Occipital 3.49* 2.93* 4.34*
Parietal −11.65* 1.97* 1.26*

Temporal 2.43* 3.06* 2.88*
Time covariate

(memory) Stability 1.00* 1.14* 0.38*

* : term is significant at significance level 0.05.

As a result of fitting TERGM, edges, gwesp, and nodecov terms are significant in all three groups.
Because the coefficients of edges are negative, it is estimated that the network’s density is low. Also
the gwesp is significant and has positive coefficients in all group. Therefore clusters tend to be formed
within the network. Considering the nodecov term, the degree in LT and RT has more significant
effect on the connection between nodes than HC.

However, for the regions of the brain where nodes are located, in LT, connections between the
same regions influenced the formation of connections between nodes. However, the effects of the
parietal and temporal were not significant. In the case of RT, the term for the connection between the
same regions was significant in all region, but the frontal and occipital effect were not significant. In
the case of HC, the connection within the limbic was not significant, and the frontal, occipital, parietal,
and temporal effects were also not significant. Moreover, using the “btergm” package to estimate
TERGM can have degeneracy problems. Thus, we checked degeneracy and found no problems in
the three models. Also, we assessed the goodness-of-fit (GOF) of the model for within-sample. The
GOF method compares the simulated networks to the observed networks. The model fits better when
the medians of the box plots are close to the line which plots the actual value of the statistics in the
observed network (Leifeld et al., 2018). Figure 5 represents the GOF of the three fitted models. Each
GOF graph is good enough to be accepted for the model.

The simulated networks of each group based on the fitted models are shown in Figure 6. The
model that produces better out-of-sample predictive fit is doing a better job of capturing the data
generating process in the group nature. The node size represents each node’s degree, and the node
color indicates the region of the brain. Some specific node size is large in patient groups LT and RT,
and this indicates that the large nodes play a significant role. From the simulated brain network plot
of HC, most nodes are of similar size and most edges are distributed centrally.

4. Conclusion

In this paper, we analyzed and found the difference between networks of epilepsy patients and healthy
controls by statistical network analysis. We calculated the temporal network statistics by considering
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Figure 5: Goodness-of-fit plots of TERGM in LT (upper), RT (middle), HC (lower).

the temporal evolution. We fitted the TERGM after MCCA is applied to find a group representative
using real neuroimaging MEG data. Specifically, we found that the HC has less network change than
the patient groups. And the results of TERGM, a simulated network using fitted TERGM of HC has
more edges distributed centrally than the patient groups.

However, we can also consider the other dynamic network model. Thus, studies for dynamic net-
work modeling, such as STERGM and VCERGM using brain networks, are required. Furthermore,
there is a limitation in that deciding the time-points may affect the result and considering temporal
models not including patients’ information affecting the disease status. And our analysis has informa-
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Figure 6: Simulation networks of LT (upper), RT (middle), HC (lower) using TERGM.

tion only about nodal information. We can also combine data from different neuroimaging modalities
such as fMRI and MEG or investigate information given by edges to utilize more information about
brain networks, which is the next topic. These studies and our methods can be helpful for basic
research and diagnosis of patients with brain diseases.
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