Acknowledgement
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (BRL No. 2021R1A4A5028907) and Basic Research (No. 2021R1F1A1054968).
References
- Bassett DS and Bullmore ET (2009). Human brain networks in health and disease, Current Opinion in Neurology, 22, 340-347. https://doi.org/10.1097/WCO.0b013e32832d93dd
- Bullmore E and Sporns O (2009). Complex brain networks: Graph theoretical analysis of structural and functional systems, Nature Reviews Neuroscience, 10, 186-198. https://doi.org/10.1038/nrn2575
- Dichio V and Fallani FDV (2022). Statistical Models of Complex Brain Networks, Available from: arXiv preprint arXiv:2209.05829
- Fransson P, Aden U, Blennow M, and Lagercrantz H (2011). The functional architecture of the infant brain as revealed by resting-state fMRI, Cerebral Cortex, 21, 145-154. https://doi.org/10.1093/cercor/bhq071
- Friston KJ, Frith CD, Liddle PF, and Frackowiak RS (1993). Functional connectivity: The principal-component analysis of large (PET) data sets, Journal of Cerebral Blood Flow & Metabolism, 13, 5-14. https://doi.org/10.1038/jcbfm.1993.4
- Fritz C, Lebacher M, and Kauermann G (2020). Tempus volat, hora fugit: A survey of tie-oriented dynamic network models in discrete and continuous time, Statistica Neerlandica, 74, 275-299. https://doi.org/10.1111/stan.12198
- Hanneke S, Fu W, Xing EP et al. (2010). Discrete temporal models of social networks, Electronic Journal of Statistics, 4, 585-605. https://doi.org/10.1214/09-EJS548
- He Y, Wang J, Wang L, and Chen ZJ (2009). Uncovering intrinsic modular organization of spontaneous brain activity in humans, PloS One, 4, e5226.
- Jin SH, Jeong W, and Chung CK (2015). Mesial temporal lobe epilepsy with hippocampal sclerosis is a network disorder with altered cortical hubs, Epilepsia, 56, 772-779. https://doi.org/10.1111/epi.12966
- Kim J (2022). Statistical analysis issues for neuroimaging MEG data, The Korean Journal of Applied Statistics, 35, 161-175. https://doi.org/10.5351/KJAS.2022.35.1.161
- Krivitsky PN and Handcock MS (2014). A separable model for dynamic networks, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 76, 29-46. https://doi.org/10.1111/rssb.12014
- Lee J, Li G, and Wilson JD (2020). Varying-coefficient models for dynamic networks, Computational Statistics & Data Analysis, 152, 107052.
- Leifeld P, Cranmer SJ, and Desmarais BA (2018). Temporal exponential random graph models with btergm: Estimation and bootstrap confidence intervals, Journal of Statistical Software, 83, 1-36. https://doi.org/10.18637/jss.v083.i06
- Liao W, Qiu C, Gentili C et al. (2010). Altered effective connectivity network of the amygdala in social anxiety disorder: A resting-state FMRI study, PloS One, 5, e15238.
- Liu J, Li M, Pan Y, Lan W, Zheng R, Wu FX, and Wang J (2017). Complex brain network analysis and its applications to brain disorders: A survey, Complexity, 2017, 1-27. https://doi.org/10.1155/2017/8362741
- Luppi AI and Stamatakis EA (2021). Combining network topology and information theory to construct representative brain networks, Network Neuroscience, 5, 96-124. https://doi.org/10.1162/netn_a_00170
- Mandal PK, Banerjee A, Tripathi M, and Sharma A (2018). A comprehensive review of magnetoencephalography (MEG) studies for brain functionality in healthy aging and Alzheimer's disease (AD), Frontiers in Computational Neuroscience, 12, 60.
- Obando Forero C (2018). Statistical graph models of temporal brain networks (Doctoral dissertation) Sorbonne universite), Paris.
- Power JD, Schlaggar BL, Lessov-Schlaggar CN, and Petersen SE (2013). Evidence for hubs in human functional brain networks, Neuron, 79, 798-813. https://doi.org/10.1016/j.neuron.2013.07.035
- Robins G, Pattison P, Kalish Y, and Lusher D (2007). An introduction to exponential random graph (p*)(p*) models for social networks, Social Networks, 29, 173-191. https://doi.org/10.1016/j.socnet.2006.08.002
- Rubinov M and Sporns O (2010). Complex network measures of brain connectivity: Uses and interpretations, Neuroimage, 52, 1059-1069. https://doi.org/10.1016/j.neuroimage.2009.10.003
- Simpson SL, Bowman FD, and Laurienti PJ (2013). Analyzing complex functional brain networks: Fusing statistics and network science to understand the brain, Statistics Surveys, 7, 1-36. https://doi.org/10.1214/13-SS103
- Thompson WH, Brantefors P, and Fransson P (2017). From static to temporal network theory: Applications to functional brain connectivity, Network Neuroscience, 1, 69-99. https://doi.org/10.1162/NETN_a_00011
- Thompson WH and Fransson P (2015). The frequency dimension of fMRI dynamic connectivity: Network connectivity, functional hubs and integration in the resting brain, NeuroImage, 121, 227-242. https://doi.org/10.1016/j.neuroimage.2015.07.022
- Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoter M, and Joliot M (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain, Neuroimage, 15, 273-289. https://doi.org/10.1006/nimg.2001.0978
- Van den Heuvel MP and Sporns O (2013). Network hubs in the human brain, Trends in Cognitive Sciences, 17, 683-696. https://doi.org/10.1016/j.tics.2013.09.012
- Van Dellen E, Douw L, Hillebrand A et al. (2012). MEG network differences between low-and high-grade glioma related to epilepsy and cognition, PloS One, 7, e50122.
- Van Dellen E, Douw L, Hillebrand A, de Witt Hamer PC, Baayen JC, Heimans JJ, Reijneveld JC, and Stam CJ (2014). Epilepsy surgery outcome and functional network alterations in longitudinal MEG: A minimum spanning tree analysis, Neuroimage, 86, 354-363. https://doi.org/10.1016/j.neuroimage.2013.10.010
- Van Diessen E, Diederen SJ, Braun KP, Jansen FE, and Stam CJ (2013). Functional and structural brain networks in epilepsy: What have we learned?, Epilepsia, 54, 1855-1865. https://doi.org/10.1111/epi.12350
- Van Straaten EC and Stam CJ (2013). Structure out of chaos: Functional brain network analysis with EEG, MEG, and functional MRI, European Neuropsychopharmacology, 23, 7-18. https://doi.org/10.1016/j.euroneuro.2012.10.010
- Van Wijk BC, Stam CJ, and Daffertshofer A (2010). Comparing brain networks of different size and connectivity density using graph theory, PloS One, 5, e13701.
- Witten DM, Tibshirani R, and Hastie T (2009). A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis, Biostatistics, 10, 515-534. https://doi.org/10.1093/biostatistics/kxp008
- Zhang X, Lei X, Wu T, and Jiang T (2014). A review of EEG and MEG for brainnetome research, Cognitive Neurodynamics, 8, 87-98. https://doi.org/10.1007/s11571-013-9274-9
- Zhuang X, Yang Z, and Cordes D (2020). A technical review of canonical correlation analysis for neuroscience applications, Human Brain Mapping, 41, 3807-3833. https://doi.org/10.1002/hbm.25090