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Abstract
For the social network of n nodes, one might be interested in finding k nodes to disseminate the information

as quickly as possible or to identify key nodes of high “local centrality”. I propose two algorithms for determining
k “local centers” of the network and work on a real case.
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1. Background and Aim

Social network is a social structure made up of individuals called nodes, which are connected by one
or more specific types of interdependency, such as friendship, kinship, common interest, financial
exchange, dislike, sexual relationships, or relationships of beliefs, knowledge or prestige (Wikipedia
“social network”, retrieved 2010/11/05). In most social networks, a number of nodes are more central
than the others in various respects such as the closeness, the betweenness and the power (Wasserman
and Faust, 1994). Huh’s (2010) booklet is a readable introduction to the social network analysis.

Rather than detecting a batch of central nodes which are often clustered together, one may be
interested in finding out several nodes that are “locally” central. For instance, Figure 1 shows the
network in which five stars of five vertices are connected to a star of five vertices. In this simple case,
the local central nodes are 7, 8, 9, 10 and 11. The aim of this paper is to identify the local central
nodes of a somewhat complex network.

The usages of local centers are 1) the identification of the overall structure of the network and 2)
the speedy delivery of the message or the goods to the most part of the network.

In Section 2, I propose two algorithms for determining k local centers. In Section 3, I work on a
real case of the network of 439 nodes. In Section 4, I remark on the issue of choosing k and the merit
of local centers, compared to the use of global centers.

2. Two Algorithms for Determining kkk Local Centers

Here, I will propose two algorithms for determining k local centers of the network, of which the nodes
are labeled by 1, . . . , n.

2.1. Maxmin algorithm

As a modification of K-means clustering algorithm, k local centers of the network of n nodes can be
determined by the following algorithm:
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Figure 1: Star-of-stars network

0) Select k nodes for initial local centers L1, . . . , Lk by the maxmin algorithm, which will be written
shortly.

1) For each node i (= 1, . . . , n), find the closest local center c(i) by searching L1, . . . , Lk for

min {d(L1, i), . . . , d(Lk, i)}.

Then n nodes are partitioned into k subgroups G1, . . . ,Gk of which the member nodes are attracted
to L1, . . . , Lk, respectively.

2) For each subgroup G j ( j = 1, . . . , k), update the local center L j by the node c closest to all member
nodes of G j, in the sense that

max
c ∈G j

∑
i ∈G j, i, c

1
d(c, i)

.

3) Repeat Step 1 and Step 2 until the list of k local centers does not change.

4) Compute the harmonic average of interdistances within subgroups by

Davrg =

 1
n − k

∑
i, L1,...,Lk

1
d(c(i), i)

−1

.

For Step 0 of the list of initial local centers, I use the “maxmin” algorithm:

1) Choose one node at random. Denote this node by L1.

2) Find the node L2 that is located farthest from L1. Thus L2 is set to c by

max
c

d(L1, c).

3) For j = 3, . . . , k, find the node c sequentially by

max
c

min {d(L1, c), . . . , d(L j−1, c)},

and set L j = c.

When the algorithm is applied to the network of Figure 1 with k = 5, the nodes 7, 8, 9, 10, 11 (or
1, 7, 8, 9, 10) appear as the local centers with Davrg = 1.02 (or 1.14), depending on the first seed that
is chosen randomly by the algorithm.
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2.2. δ-Neighborhood algorithm

Suppose that the message from the initial node can be reached to its connected nodes provided the
distance between two nodes is less than or equal to δ. The objective is to find k nodes to maximize the
spread of message to the whole network. I propose the following algorithm:

1) Select the first node L1 among the nodes c which achieves

max
c

n∑
i=1

I [ d(c, i) ≤ δ ].

Discard the nodes that can be reached from L1 within distance δ and retain the other nodes of the
network. In subsequent steps, the step number is denoted by j and the number of nodes retained
is denoted by n j. Set the step number j equal to 2.

2) Select the next node L j among the nodes c which achieves

max
c

n j−1∑
i=1

I [ d(c, i) ≤ δ ].

Discard the nodes that can be reached from L j within radius δ and retain the other nodes of the
network. Increase the step number j by 1.

3) Repeat Step 2 while the step number j is less than or equal to k and n j−1 ≥ 1.

4) Output the number of nodes finally retained in the network and compute the coverage which is
defined by the ratio of the number of nodes reached from L1, . . . , Lk with the distance less than or
equal to δ over the total number of nodes in the network.

When the algorithm is applied to the network of Figure 1 with δ = 1 and k = 5, the nodes 7, 8, 9,
10, 11 appear as the local centers with the number of unreached nodes nk equal to 1.

3. The Case of Faux Magnolia High Network

The Faux Magnolia High(FMH) Network is obtained by surveying friend relationship among 1461
students of a high school located in the southern United States (Goodreau et al., 2008). FMH data is
available in ergm package of open-source statistical language R (Hunter et al., 2008). In the network,
the largest component of students communicating each other consists of 439 students. Hereafter, I
will apply two algorithms of Section 2 to the subnetwork of FMH. See Figure 2. I start with k = 10.

3.1. Maxmin local centers

Out of ten trials of the algorithm with k = 10, it turns out that the students with ID’s 21, 63, 122,
356, 677, 991, 1009, 1019, 1064, 1263 are local centers with Davrg = 2.6, the harmonic mean of the
distances between the local center and its membership nodes. In Figure 2, maxmin local centers are
colored in red. By setting k = 5, the harmonic mean of interdistances within subgroups increases to
3.7. For k = 20, the harmonic mean of interdistances decreases to 2.0.

3.2. δ-Neighborhood local centers

For δ = 7 and k = 10, it turns out that the students with ID’s 2, 294, 479, 677, 769, 914, 1142, 1170,
1358, 1385 are local centers with the coverage 94.5%. For δ = 4 and k = 10, the coverage drops to
73.3%. The coverage returns to 94.3% by increasing k to 20.
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Figure 2: The largest component of Faux Magnolia High(FMH) network

4. Remarks

Finding k local centers in the network and k centroids in the multivariate dataset share several common
features such as the maxmin seeding of initial group centers (centroids) and allocation of the nodes
(observations) to the nearest group center (centroid). They are not the same, however. Although
determining the number k is a very complex matter in K-means clustering, the choice of k in social
networks, as seen in Section 3, is directly linked to the average interdistances between nodes within
subgroups or the coverage with neighborhood radius of δ. Therefore, one may set k to keep the
interdistances below a certain level or to secure the coverage above a certain level.

Conventional analyses of social networks focus on the detection of global k nodes with the largest
centrality index values (Freeman, 1979). For the largest component of Faux Magnolia High network,
k(= 10) groups induced by the global centers inflate the average interdistance to 3.1 (larger than 2.6
of 10 subgroups by the local centers). On coverage rate, the difference is more drastic: it is 80.5% by
10 global centers, much less than 94.5% by 10 local centers.

One may adopt time-proven hierarchical clustering algorithms such as complete linkage or single
linkage in clustering n nodes of the network, followed by identification of the central nodes in respec-
tive clusters. Such methods may work well in most cases, however, it should be noted that they are
not addressing the issues raised in this study directly. Of course, traditional clustering methods can be
used only for undirected networks.
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