• Title/Summary/Keyword: Statistical Functions

Search Result 1,000, Processing Time 0.022 seconds

Principal component analysis for Hilbertian functional data

  • Kim, Dongwoo;Lee, Young Kyung;Park, Byeong U.
    • Communications for Statistical Applications and Methods
    • /
    • v.27 no.1
    • /
    • pp.149-161
    • /
    • 2020
  • In this paper we extend the functional principal component analysis for real-valued random functions to the case of Hilbert-space-valued functional random objects. For this, we introduce an autocovariance operator acting on the space of real-valued functions. We establish an eigendecomposition of the autocovariance operator and a Karuhnen-Loève expansion. We propose the estimators of the eigenfunctions and the functional principal component scores, and investigate the rates of convergence of the estimators to their targets. We detail the implementation of the methodology for the cases of compositional vectors and density functions, and illustrate the method by analyzing time-varying population composition data. We also discuss an extension of the methodology to multivariate cases and develop the corresponding theory.

On the comparison of cumulative hazard functions

  • Park, Sangun;Ha, Seung Ah
    • Communications for Statistical Applications and Methods
    • /
    • v.26 no.6
    • /
    • pp.623-633
    • /
    • 2019
  • This paper proposes two distance measures between two cumulative hazard functions that can be obtained by comparing their difference and ratio, respectively. Then we estimate the measures and present goodness of t test statistics. Since the proposed test statistics are expressed in terms of the cumulative hazard functions, we can easily give more weights on earlier (or later) departures in cumulative hazards if we like to place an emphasis on earlier (or later) departures. We also show that these test statistics present comparable performances with other well-known test statistics based on the empirical distribution function for an exponential null distribution. The proposed test statistic is an omnibus test which is applicable to other lots of distributions than an exponential distribution.

Variable Selection with Nonconcave Penalty Function on Reduced-Rank Regression

  • Jung, Sang Yong;Park, Chongsun
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.1
    • /
    • pp.41-54
    • /
    • 2015
  • In this article, we propose nonconcave penalties on a reduced-rank regression model to select variables and estimate coefficients simultaneously. We apply HARD (hard thresholding) and SCAD (smoothly clipped absolute deviation) symmetric penalty functions with singularities at the origin, and bounded by a constant to reduce bias. In our simulation study and real data analysis, the new method is compared with an existing variable selection method using $L_1$ penalty that exhibits competitive performance in prediction and variable selection. Instead of using only one type of penalty function, we use two or three penalty functions simultaneously and take advantages of various types of penalty functions together to select relevant predictors and estimation to improve the overall performance of model fitting.

Robust Optimal Design Method Using Two-Point Diagonal Quadratic Approximation and Statistical Constraints (이점 대각 이차 근사화 기법과 통계적 제한조건을 적용한 강건 최적설계 기법)

  • Kwon, Yong-Sam;Kim, Min-Soo;Kim, Jong-Rip;Choi, Dong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.12
    • /
    • pp.2483-2491
    • /
    • 2002
  • This study presents an efficient method for robust optimal design. In order to avoid the excessive evaluations of the exact performance functions, two-point diagonal quadratic approximation method is employed for approximating them during optimization process. This approximation method is one of the two point approximation methods. Therefore, the second order sensitivity information of the approximated performance functions are calculated by an analytical method. As a result, this enables one to avoid the expensive evaluations of the exact $2^{nd}$ derivatives of the performance functions unlike the conventional robust optimal design methods based on the gradient information. Finally, in order to show the numerical performance of the proposed method, one mathematical problem and two mechanical design problems are solved and their results are compared with those of the conventional methods.

A case study of MS Excel's powerful functions for statistical data analysis. (Focused on an Analysis of Variance menu) (자료 통계 분석을 위한 MS 엑셀의 유용한 기능들에 관한 사례연구 (지하철 이용객 자료 분석))

  • Kim, Sook-Young
    • Journal of the Korea Computer Industry Society
    • /
    • v.9 no.5
    • /
    • pp.223-228
    • /
    • 2008
  • A case study to show MS Excel's convenient and powerful functions was conducted to test hypotheses with subway data. Quantitative variables were described using descriptive menu, and qualitative variables were described using histogram menu of a MS Excel software. Relationships were tested using regression menu, differences were tested using t-test menu, and factors were tested using variance-layout menu of a Excel software. Data input, management, and statistical analysis were done successfully with only a MS Excel software.

  • PDF

A Study on High Breakdown Discriminant Analysis : A Monte Carlo Simulation

  • Moon Sup;Young Joo;Youngjo
    • Communications for Statistical Applications and Methods
    • /
    • v.7 no.1
    • /
    • pp.225-232
    • /
    • 2000
  • The linear and quadratic discrimination functions based on normal theory are widely used to classify an observation to one of predefined groups. But the discriminant functions are sensitive to outliers. A high breakdown procedure to estimate location and scatter of multivariate data is the minimum volume ellipsoid or MVE estimator To obtain high breakdown classifiers outliers in multivariate data are detected by using the robust Mahalanobis distance based on MVE estimators and the weighted estimators are inserted in the functions for classification. A samll-sample MOnte Carlo study shows that the high breakdown robust procedures perform better than the classical classifiers.

  • PDF

Goodness-of-fit test for mean and variance functions

  • Jung, Sin-Ho;Lee, Kee-Won
    • Journal of the Korean Statistical Society
    • /
    • v.26 no.2
    • /
    • pp.199-210
    • /
    • 1997
  • Using regression methods based on quasi-likelihood equation, one only needs to specify the conditional mean and variance functions for the response variable in the analysis. In this paper, an omnibus lack-of-fit test is proposed to test the validity of these two functions. Our test is consistent against the alternative under which either the mean or the variance is not the one specified in the null hypothesis. The large-sample null distribution of our test statistics can be approximated through simulations. Extensive numerical studies are performed to demonstrate that the new test preserves the prescribed type I error probability. Power comparisons are conducted to show the advantage of the new proposal.

  • PDF

Moment-Based Density Approximation Algorithm for Symmetric Distributions

  • Ha, Hyung-Tae
    • Communications for Statistical Applications and Methods
    • /
    • v.14 no.3
    • /
    • pp.583-592
    • /
    • 2007
  • Given the moments of a symmetric random variable, its density and distribution functions can be accurately approximated by making use of the algorithm proposed in this paper. This algorithm is specially designed for approximating symmetric distributions and comprises of four phases. This approach is essentially based on the transformation of variable technique and moment-based density approximants expressed in terms of the product of an appropriate initial approximant and a polynomial adjustment. Probabilistic quantities such as percentage points and percentiles can also be accurately determined from approximation of the corresponding distribution functions. This algorithm is not only conceptually simple but also easy to implement. As illustrated by the first two numerical examples, the density functions so obtained are in good agreement with the exact values. Moreover, the proposed approximation algorithm can provide the more accurate quantities than direct approximation as shown in the last example.

Bayesian test for the differences of survival functions in multiple groups

  • Kim, Gwangsu
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.2
    • /
    • pp.115-127
    • /
    • 2017
  • This paper proposes a Bayesian test for the equivalence of survival functions in multiple groups. Proposed Bayesian test use the model of Cox's regression with time-varying coefficients. B-spline expansions are used for the time-varying coefficients, and the proposed test use only the partial likelihood, which provides easier computations. Various simulations of the proposed test and typical tests such as log-rank and Fleming and Harrington tests were conducted. This result shows that the proposed test is consistent as data size increase. Specifically, the power of the proposed test is high despite the existence of crossing hazards. The proposed test is based on a Bayesian approach, which is more flexible when used in multiple tests. The proposed test can therefore perform various tests simultaneously. Real data analysis of Larynx Cancer Data was conducted to assess applicability.

Multivariate confidence region using quantile vectors

  • Hong, Chong Sun;Kim, Hong Il
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.6
    • /
    • pp.641-649
    • /
    • 2017
  • Multivariate confidence regions were defined using a chi-square distribution function under a normal assumption and were represented with ellipse and ellipsoid types of bivariate and trivariate normal distribution functions. In this work, an alternative confidence region using the multivariate quantile vectors is proposed to define the normal distribution as well as any other distributions. These lower and upper bounds could be obtained using quantile vectors, and then the appropriate region between two bounds is referred to as the quantile confidence region. It notes that the upper and lower bounds of the bivariate and trivariate quantile confidence regions are represented as a curve and surface shapes, respectively. The quantile confidence region is obtained for various types of distribution functions that are both symmetric and asymmetric distribution functions. Then, its coverage rate is also calculated and compared. Therefore, we conclude that the quantile confidence region will be useful for the analysis of multivariate data, since it is found to have better coverage rates, even for asymmetric distributions.