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Abstract
In this paper we extend the functional principal component analysis for real-valued random functions to

the case of Hilbert-space-valued functional random objects. For this, we introduce an autocovariance operator
acting on the space of real-valued functions. We establish an eigendecomposition of the autocovariance operator
and a Karuhnen-Loève expansion. We propose the estimators of the eigenfunctions and the functional principal
component scores, and investigate the rates of convergence of the estimators to their targets. We detail the
implementation of the methodology for the cases of compositional vectors and density functions, and illustrate the
method by analyzing time-varying population composition data. We also discuss an extension of the methodology
to multivariate cases and develop the corresponding theory.
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1. Introduction

Principal component analysis (PCA) is a useful tool for identifying the dominant directions of vari-
ation of multivariate data. Functional PCA (FPCA) is its generalization to time-varying data, called
functional data or stochastic processes. Functional data may take values in Euclidean spaces, Hilbert
spaces, or more generally in metric spaces. Most of the works on functional data have been focused on
the Euclidean case (Ramsay and Silverman, 2005; Chiou et al., 2014). These days we often encounter
non-Euclidean data. There has been increasing interest in developing suitable statistical methodolo-
gies for analyzing non-Euclidean data. The Hilbertian case is central in this development. In this
paper, we discuss PCA when the observed data are time-varying and take values in a general Hilbert
space.

Recently, Lin and Yao (2019) proposed an approach to FPCA for Riemannian manifolds. Al-
though they are mainly concerned with manifold-valued functional data, their approach is based on
an eigenanalysis for Hilbertian functional data, so that one may use the procedure described there for
Hilbertian stochastic processes. The eigenanalysis discussed in Lin and Yao (2019) gives eigenfunc-
tions that live in the same space as the data objects. This means that, if one adopts their approach for
Hilbertian functional data, then one would have eigenfunctions whose trajectories are time-varying
Hilbertian values. In such cases one may face some difficulty in visualizing or interpreting the result-
ing eigenfunctions.

In this paper we take a different approach. Our approach gives real-valued eigenfunctions regard-
less of the underlying Hilbert space where the random functions take values. The associated functional
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principal component (FPC) scores lie in the Hilbert space. For example, consider the case where the
Hilbert space under study is a simplex, Sk−1 = {(x1, . . . , xk) ∈ (0, 1)k : x1 + · · · + xk = 1}. Let X
be a random function defined on a time domain T ⊂ R such that X(t) for each t ∈ T is a random
element taking values in Sk−1. In this case, our approach gives real-valued eigenfunctions which map
T to R, and FPC scores which live in Sk−1. Our procedure specialized to this simplex example may
be considered as a generalization of the recent work by Wang et al. (2015) who studied the PCA
for multivariate compositional data. By introducing an autocovariance operator acting on the space
of real-valued functions, we establish an eigendecomposition of the autocovariance operator and a
Karuhnen-Loève expansion. We illustrate our proposal through a real data example. We also extend
the methodology to multivariate Hilbertian functional data.

2. Methodology

Let H be a separable Hilbert space equipped with an inner product ⟨· , · ⟩H and the corresponding norm
∥ · ∥H. We denote the zero vector by 0, the addition operation by ⊕ and the scalar multiplication by
⊙. There are numerous examples of Hilbert spaces. The most well-known examples are the spaces
of square integrable real-valued functions defined on a set S ⊂ Rk. In this case, 0 is a zero function,
a ⊕ b for a = a(·) and b = b(·) with a, b : S → R is defined by (a ⊕ b)(z) = a(z) + b(z) and
(c ⊙ a)(z) = c · a(z) for c ∈ R. It is well known that these are separable Hilbert spaces. In Section 3
we discuss two other examples. Throughout this paper, we let LH2 , for a Hilbert space H with an
inner product ⟨· , · ⟩H , denote the space of square integrable H-valued functions f : [0, 1] → H , i.e.,
LH2 = { f :

∫ 1
0 ∥ f (t)∥2H dt < ∞} where ∥ f (t)∥2H = ⟨ f (t), f (t)⟩H . The associated inner product ⟨· , · ⟩LH2

on LH2 is defined by ⟨ f , g⟩LH2 =
∫ 1

0 ⟨ f (t), g(t)⟩H dt and its norm ∥ · ∥LH2 by ∥ f ∥2
LH2
= ⟨ f , f ⟩LH2 .

2.1. Eigenanalysis for Hilbertian functional data

Let X be a continuous H-valued stochastic process on the unit time interval [0, 1]. For each t ∈ [0, 1],
X(t) is a random element taking values in H. We assume E

∫ 1
0 ∥X(t)∥2H dt < ∞. This implies that

E∥X(t)∥2H < ∞ a.e. t ∈ [0, 1]. It also implies that
∫ 1

0 ∥X(t)∥2H dt < ∞ with probability one. For
simplicity of presentation, we consider a centered X such that EX(t) = 0 for all t ∈ [0, 1].

We let C : [0, 1] × [0, 1]→ R be the bivariate function defined by

C(s, t) = E (⟨X(s), X(t)⟩H) . (2.1)

In the case where H = R, the C reduces to the usual ‘autocovariance’ function C(s, t) = E (X(s)X(t)).
We consider the integral operator C : LR

2 → LR
2 defined by

C ( f )(s) =
∫ 1

0
C(s, t) f (t) dt, s ∈ [0, 1], f ∈ LR

2 .

Then, C is nonnegative definite. This follows since

⟨C ( f ), f ⟩LR
2
=

∫ 1

0
C ( f )(s) · f (s) ds

= E

∥∥∥∥∥∥
∫ 1

0
f (t) ⊙ X(t) dt

∥∥∥∥∥∥2

H
≥ 0,
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for all f ∈ LR
2 , where the integral on the right hand side of the second equality is in the Bochner sense.

Bochner integration is a notion of integration that generalizes the conventional Lebesgue integrals to
Banach-space-valued maps, see Section 2 in Jeon and Park (2020) for details. The kernel C(· , ·) of
the integral operator C admits the following eigendecomposition due to Mercer’s Theorem:

C(s, t) =
∞∑
j=1

λ jϕ j(s)ϕ j(t), (2.2)

where λ1 ≥ λ2 ≥ · · · ≥ 0 are the eigenvalues and {ϕ j}∞l=1 are the associated eigenfunctions of C
that form a complete orthonormal system for the space LR

2 . The equality (2.2) is a standard result in
functional data analysis, see Theorem 4.6.5 in Hsing and Eubank (2015), for example. The sum of all
eigenvalues equals the total variation of X, i.e.,

∞∑
j=1

λ j = E
∫ 1

0
∥X(t)∥2H dt.

Now, we derive a Karhunen-Loève expansion of X. We note that the standard result such as
Theorem 7.2.7 in Hsing and Eubank (2015) do not apply here, since ϕ j ∈ LR

2 and X(·, ω) ∈ LH
2 belong

to different spaces. Let {el}Ll=1 be an orthonormal basis of H, where we allow L = ∞. For each
l ≥ 1, define Zl(t) = ⟨X(t), el⟩H. They are real-valued stochastic processes. Note that Zl(·) ∈ LR

2 with
probability one since ∫ 1

0
|⟨X(t), el⟩H|2 dt ≤

∫ 1

0
∥X(t)∥2H dt (2.3)

and the integral on the right hand side of (2.3) exists with probability one. Since {ϕ j}∞j=1 is a complete
orthonormal system for LR

2 , it holds that

Zl(t) =
∞∑
j=1

(∫ 1

0
⟨X(s), el⟩H · ϕ j(s) ds

)
· ϕ j(t). (2.4)

Also, since {el}Ll=1 is an orthonormal basis of H, we get that

X(t) =
L⊕

l=1

Zl(t) ⊙ el

=

∞⊕
j=1

L⊕
l=1

(∫ 1

0
⟨X(s), el⟩H · ϕ j(s) ds · ϕ j(t)

)
⊙ el

=

∞⊕
j=1

 L⊕
l=1

⟨∫ 1

0
X(s) ⊙ ϕ j(s) ds, el

⟩
H
⊙ el

 ⊙ ϕ j(t)

=

∞⊕
j=1

(∫ 1

0
X(s) ⊙ ϕ j(s) ds

)
⊙ ϕ j(t). (2.5)

Here, we have used (2.4) for the second equation. The integrals on the right hand sides of the third
and fourth equations in (2.5) are Bochner integrals. Let ξξξ j =

∫ 1
0 X(s) ⊙ ϕ j(s) ds. These are in H and
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plays the role of FPC in the conventional FPCA for real-valued random functions. We call ξξξ j the FPC
scores of X. The foregoing arguments establish the following theorem. Let ⊖ denote the subtraction
operation in H defined by a ⊖ b = a ⊕ (−1) ⊙ b.

Theorem 1. Assume that X is a continuous H-valued stochastic process on [0, 1] and that E
∫ 1

0
∥X(t)∥2Hdt < ∞. Then, it holds that

lim
N→∞

sup
t∈[0,1]

E

∥∥∥∥∥∥∥∥ X(t) ⊖
N⊕

j=1

ξξξ j ⊙ ϕ j(t)

∥∥∥∥∥∥∥∥
2

H

= 0.

Apparently, E ξξξ j = 0. Any two FPC scores, ξξξ j and ξξξk for j , k, are uncorrelated in the sense that
E(⟨ξξξ j, ξξξk⟩H) = 0. Their variances defined by E(∥ξξξ j∥2H) equal the corresponding eigenvalues λ j. The
latter two properties follow from

E
(
⟨ξξξ j, ξξξk⟩H

)
=

∫
[0,1]2

C(s, t)ϕ j(s)ϕk(t) ds dt

=
∑
l≥1

λl

(∫ 1

0
ϕl(s)ϕ j(s) ds

) (∫ 1

0
ϕl(t)ϕk(t) dt

)
= λ j · I( j = k).

Remark 1. We are aware of two recent pioneering works on PCA for Riemannian functional data,
which are Dai and Müller (2018) and Lin and Yao (2019). Both deal with functional data taking values
in Riemannian manifolds. The basic idea of the first is to embed the manifold under consideration
in an Euclidean ambient space, perform an eigenanalysis in the ambient space and then transform
the results back to the manifold via the ‘exponential map’. Thus, the actual eigenanalysis is done on
a Euclidean space. The latter approach is to transform Riemannian stochastic process to a random
element taking values in a tensor Hilbert space and then perform an eigenanalysis in the latter Hilbert
space. However, the eigenanalysis in the Hilbert space is different from ours in that it produces
eigenfunctions residing in the same space as the transformed stochastic process, while our approach
gives eigenfunctions residing in LR

2 , not in LH
2 , regardless of the nature of H.

2.2. Estimation of eigenfunctions and functional principal component scores

Let Xi, 1 ≤ i ≤ n, be independent copies of X that we actually observe. In this subsection, we
describe a method of estimating ϕ j and ξξξ j that we introduced in the previous subsection. Without loss
of generality we assume that the sample average n−1

⊕n
i=1 Xi(t) = 0. First, we estimate C(s, t) by

Ĉ(s, t) = n−1
n∑

i=1

⟨Xi(s),Xi(t)⟩H. (2.6)

Define Ĉ : LR
2 → LR

2 , the estimator of the integral operator C , by

Ĉ ( f )(s) =
∫ 1

0
Ĉ(s, t) f (t) dt, s ∈ [0, 1], f ∈ LR

2 .
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Then, it is also nonnegative definite since

⟨
Ĉ ( f ), f

⟩
LR

2
= n−1

n∑
i=1

∥∥∥∥∥∥
∫ 1

0
f (t) ⊙ Xi(t) dt

∥∥∥∥∥∥2

H
≥ 0,

for all f ∈ LR
2 . Thus, due to Mercer’s Theorem again it holds that there exists λ̂1 ≥ λ̂2 ≥ · · · ≥ 0 and a

complete orthonormal basis {ϕ̂ j}∞j=1 of LR
2 such that

Ĉ(s, t) =
∞∑
j=1

λ̂ jϕ̂ j(s)ϕ̂ j(t).

The λ̂ j are the estimators of the respective λ j and ϕ̂ j are the estimators of the respective ϕ j. Let
ξξξi j =

∫ 1
0 Xi(s) ⊙ ϕ j(s) ds be the true FPC scores of Xi. We estimate ξξξi j by

ξ̂ξξi j =

∫ 1

0
Xi(s) ⊙ ϕ̂ j(s) ds, j ≥ 1. (2.7)

The empirical FPC scores (ξ̂ξξi j : 1 ≤ i ≤ n) and (ξ̂ξξik : 1 ≤ i ≤ n) for j , k are also uncorrelated in
the sense that

n−1
n∑

i=1

⟨
ξ̂ξξi j, ξ̂ξξik

⟩
H
= 0.

Also, we have λ̂ j = n−1 ∑n
i=1 ∥ξ̂ξξi j∥2H for 1 ≤ j ≤ d. Furthermore, using the standard perturbation theory

in Bosq (2000) or in Hsing and Eubank (2015), for example, we may show the following theorem.

Theorem 2. Assume that E
∫ 1

0 ∥X(t)∥4H dt < ∞, and that min1≤l≤J(λl − λl+1) > 0, where J ≥ 1 is

fixed. Then, for all 1 ≤ j ≤ J, it holds that
∫ 1

0 |ϕ̂ j(t) − ϕ j(t)|2 dt = Op(n−1). Furthermore, if we assume

additionally that E
∫ 1

0 ∥X(t)∥2βH dt < ∞ for some β ≥ 2, then max1≤i≤n ∥ξ̂ξξi j ⊖ ξξξi j∥H = Op(n−(β−1)/2β) for
all 1 ≤ j ≤ J.

In the above theorem, J is fixed. We may let J depend on the sample size n and grow as n → ∞.
In the latter case, the rates of convergence of ϕ̂ j and ξ̂ξξi j to their targets depend on how fast δJ :=
min1≤l≤J(λl − λl+1) tends to zero as J → ∞.

3. Two special cases

Here, we consider two Hilbert spaces and give some more details for the implementation of the
methodology presented in the previous section. One is the space of compositional vectors and the
other is the space of density functions. The vector operations for these spaces are unconventional. We
use isometric isomorphisms that map the respective Hilbert spaces to Rk and LR

2 where the conven-
tional vector operations apply. We note that, for the space of square integrable real-valued functions
on Rd, which is another important class of H, the vector operations are defined by

(
f (·) ⊕ g(·))(u) =

f (u) + g(u) and
(
c ⊙ f (·))(u) = c · f (u).
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3.1. Space of compositional vectors

Suppose that H is the standard (k − 1)-simplex, Sk−1 = {(v1, . . . , vk) ∈ (0, 1)k :
∑k

j=1 v j = 1}. For
v,w ∈ Sk−1 and c ∈ R, define vector addition, scalar multiplication and inner product by

v ⊕ w =
(

v1w1

v1w1 + · · · + vkwk
, . . . ,

vkwk

v1w1 + · · · + vkwk

)
,

c ⊙ v =
(

vc
1

vc
1 + · · · + vc

k
, . . . ,

vc
k

vc
1 + · · · + vc

k

)
,

⟨v,w⟩Sk−1 =
1
2k

k∑
j=1

k∑
l=1

log
(

v j

vl

)
log

(
w j

wl

)
. (3.1)

With 0 = (1/k, . . . , 1/k) as the zero vector, (Sk−1,⊕,⊙, ⟨· , ·⟩Sk−1 ) is a separable Hilbert space with the
operation structure at (3.1), known as Aitchison geometry (Aitchison, 1986). The mapL : Sk−1 → Rk

defined by L(u) = x with x j = log u j − k−1 ∑k
l=1 log ul, also known as the ‘center log ratio’ transform,

is an isometry such that ⟨v,w⟩Sk−1 = ⟨L(v),L(w)⟩E , where ⟨· , ·⟩E denotes the Euclidean inner product,
i.e., ⟨a,b⟩E = a⊤b. The transformation L is also an isomorphism. The addition v ⊕ w and the scalar
multiplication c ⊙ v in Sk−1 may be performed by the Euclidean operation with L(v) and L(w) and
then transforming the results back to the corresponding compositional vectors. That is,

v ⊕ w = L−1(L(v) +L(w)), c ⊙ v = L−1(c · L(v)).

As we have seen in the previous section, the FPCA with Hilbertian functional data boils down to
the computation of the covariance kernel Ĉ at (2.6). In the case of compositional functional data Xi

such that Xi(t) ∈ Sk−1 for all t ∈ [0, 1], it is nothing else than

Ĉ(s, t) = n−1
n∑

i=1

L(Xi(s))⊤L(Xi(t)). (3.2)

The eigenfunctions ϕ̂ j of the kernel Ĉ at (3.2) are then readily obtained from the existing method of
eigenanalysis for real-valued functional data.

We discuss the computation of the Bochner integrals at (2.7) for ξ̂ξξi j. Suppose that we want to

compute a Bochner integral
∫ 1

0 f(t) dt for a Bochner integrable map f ∈ LS
k−1

2 . Then, there exists

a sequence of simple maps fn : [0, 1] → Sk−1 such that
∫ 1

0 ∥fn(t) ⊖ f(t)∥Sk−1 dt → 0 as n → ∞.
Since the center log ratio transform L is an isometry, L(f) is Lebesgue integrable. Furthermore,∫

0 ∥L(fn(t)) − L(f(t))∥E dt → 0, where ∥ · ∥E denotes the Euclidean norm in Rk. Now, note that the

simple maps fn take the form fn(t) =
⊕N

l=1 1S l,n (t) ⊙ hl,n, where S l,n ⊂ [0, 1] satisfy S l,n ∩ S l′,n = ∅
for l , l′ and

∪N
l=1 S l,n = [0, 1], and hl,n are constant compositional vectors. For such simple maps, it

holds that ∫ 1

0
fn(t) dt =

N⊕
l=1

µ(S l,n) ⊙ hl,n = L−1L
 N⊕

l=1

µ(S l,n) ⊙ hl,n


= L−1

 N∑
l=1

µ(S l,n) · L(hl,n)


= L−1

(∫ 1

0
L(fn(t)) dt

)
(3.3)
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since L is injective, where the last integral is in Lebesgue sense. Since L and its inverse are continu-
ous, we get from (3.3) and the convergence

∫ 1
0 ∥fn(t) ⊖ f(t)∥Sk−1 dt → 0 that∫ 1

0
f(t) dt = lim

n→∞
L−1

(∫ 1

0
L(fn(t)) dt

)
= L−1

(∫ 1

0
L(f(t)) dt

)
,

where the second and third integrals are in Lebesgue sense. This means that we may evaluate ξ̂ξξi j by
the Lebesgue integration of L(

Xi(t) ⊙ ϕ̂ j(t)
)

as follows.

ξ̂ξξi j = L−1
(∫ 1

0
L

(
Xi(t) ⊙ ϕ̂ j(t)

)
dt

)
, j ≥ 1. (3.4)

3.2. Space of density functions

For simplicity we consider the space of density functions supported on [0, 1]. An extension to the
case of a general support on Rd with finite Lebesgue measure is immediate. This space is actually not
a Hilbert space. We consider an equivalence relation such that f and g are equivalent if and only if f
is a constant multiple of g. Let [ f ] denote the class of real-valued functions g such that g = c · f for
some constant c > 0. Let

F =

{
[ f ] :

∫ 1

0

(
log f (x)

)2 dx < ∞
}
.

For this space, we define vector addition, scalar multiplication and inner product as follows.

[ f ] ⊕ [g] = [ f · g], c ⊙ [ f ] = [ f c],

⟨[ f ], [g]⟩F =
∫

[0,1]2
log

(
f (x)
f (y)

)
log

(
g(x)
g(y)

)
dx dy. (3.5)

With 0 = [1] = R as the zero vector, F is a separable Hilbert space with the operation structure at
(3.5), see van den Boogaart et al. (2014).

We define the map L : F → LR
2 by

L([ f ])(x) = log f (x) −
∫ 1

0
log f (u) du. (3.6)

Then, L is an isometry preserving the metrics on the two spaces:

⟨[ f ], [g]⟩F = ⟨L([ f ]),L([g])⟩LR
2

=

∫ 1

0

(
log f (x) −

∫ 1

0
log f (u) du

) (
log g(x) −

∫ 1

0
log g(u) du

)
dx.

Here we recall that ⟨· , · ⟩LR
2

is the usual inner product on LR
2 . We note that L is scale-invariance, so

that we may simply write L( f ) instead of L([ f ]). The transformation L is also an isomorphism. As
in the case of compositional vectors, the addition and scalar multiplication in F may be performed by
doing the corresponding operation on LR

2 and then transforming the results back to the density space.
That is,

[ f ] ⊕ [g] = L−1(L( f ) +L(g)), c ⊙ [ f ] = L−1(c · L( f )).
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The covariance kernel Ĉ at (2.6) in this case is given by

Ĉ(s, t) = n−1
n∑

i=1

⟨L(Xi(s)),L(Xi(t))⟩LR
2
. (3.7)

Here, it is worthwhile to note that Xi(s) for a given s ∈ [0, 1] is a random density, i.e., if we write
it as Xi(· , s), it is a random element such that Xi(u, s) ≥ 0 and

∫ 1
0 Xi(u, s) du = 1 with probability

one. For the kernel Ĉ at (3.7), we may also obtain its eigenfunctions ϕ̂ j from the existing method of
eigenanalysis for real-valued functional data.

Since L as defined at (3.6) is an isometry, injective, continuous and has continuous inverse, we
may prove (3.4) as well for the space of density functions. In practical implementation, we may
discretize densities on a grid of [0, 1], which result in functional compositional vectors. Then, we are
able to apply the procedure described in Section 3.1 to density functional data. Specifically, we may
choose a grid {u1, . . . , uD} ⊂ [0, 1] and then apply (3.2) and (3.4) with

Xi(t) =

 Xi(u1, t)∑D
j=1 Xi(u j, t)

, . . . ,
Xi(uD, t)∑D
j=1 Xi(uD, t)


as SD−1-valued random elements.

4. Real data example

Here, we illustrate the methodology we presented in Section 2. We analyzed changes in population
composition by age as time passes, which is an important element in demographic analysis and a
key to understanding the social dynamic. The dataset we analyzed came from the World Population
Prospects 2019 (WPP, https://population.un.org/wpp/) offered by the United Nations (UN), available
at https://population.un.org/wpp/Download/Files/1 Indicators%20(Standard)/CSV FILES/WPP. The
WPP2019 contains numerous data, among which we took those on population by location, age group
and year. The original dataset consists of population estimates from the year 1950 to 2020, and
projections from 2020 to 2100. Of these years we took the period 1950–2018. The original age groups
were 0–4, 5–9, . . . , 95–99, 100+. We aggregated them into three age groups, 0–19 (before working
age), 20–64 (work force), 65+ (retired). Locations are given in several types of categories such as
country, region, subregion, etc. We chose ‘country’ as the data unit and the number of countries was
201. Thus, we obtained compositional vectors xo

i (t j) = (xo
i1(t j), xo

i2(t j), xo
i3(t j)) for 1 ≤ i ≤ 201 and

t j = 1950 + ( j − 1) for 1 ≤ j ≤ 69, where xo
i1, x

o
i2, and xo

i3 are the population proportions for the age
groups, 0–19, 20–64 and 65+, respectively, for the ith country.

To transform the dataset further into a set of smooth compositional vectors over time, we pre-
smoothed xo

i (t j) along the time scale on [1950, 2018]. We applied the local linear smoothing technique
to L(xo

i (t j)), where L is the center log transform introduced in Section 3.1, and then transform the
results back to compositional functional vectors. Specifically, we computed

xi(t) = L−1

arg min
a∈R3

69∑
j=1

Kh(t, t j)
∥∥∥L(

xo
i (t j)

) − a − b(t j − t)
∥∥∥2

E

 , t ∈ [1950, 2018],

where Kh(t, t j) with the bandwidth h are kernel weights defined by Kh(t, t j) = h−1K((t − t j)/h) for
a symmetric nonnegative function K and ∥ · ∥E denotes the Euclidean norm on R3. We chose the
Epanechnikov kernel K(u) = (3/4)(1 − u2)I(|u| ≤ 1) and used h = 2.0.
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Figure 1: First two eigenfunctions for time-varying population composition.

Our primary interest in this example was to see how well a few number of the FPC scores
can explain the apparent change in population composition over time. For this we took dominant
eigenfunctions based on the criterion called ‘fraction of variance explained (FVE)’. The FVE of the
first J eigenfunctions is defined by FVEJ =

∑J
j=1 λ̂ j/

∑
j≥1 λ̂ j. We chose eigenfunctions which al-

together explained more than 90% of the variation of the sample compositional functional vectors
{xi : 1 ≤ i ≤ 201}. It turned out that J = 2. In fact, the FVEs of the leading eigenfunctions
were FVE1 = 0.899 and FVE2 = 0.976. Figure 1 depicts the first two eigenfunctions ϕ̂1 and ϕ̂2.
They represent the principal deviations from the average population composition over time. The first
eigenfunction has an increasing trend. This indicates that variability between population composition
patterns amongst different countries is mostly explained by increased separation from the mean com-
position as time passed. This might have something to do with increased variability in recent years
among 201 countries in birth rate and human mortality.

To illustrate how well the two leading FPC scores can reproduce the original data, we computed
ξ̂ξξi j according to the formula (3.4) and reconstructed Xi as

X̂i(t) = ξ̂ξξi1 ⊙ ϕ̂1(t) ⊕ ξ̂ξξi2 ⊙ ϕ̂2(t).

Figure 2 compares the original Xi and the reconstructed X̂i for Republic of Korea. We find that the
reconstruction is quite successful, meaning that the first two FPC scores capture most of time-dynamic
features in the population composition of the country. This is also the case with other countries,
although we do not present them all here.

We performed a cluster analysis based on the two leading FPC scores. We formed three clusters
based on the following distance metric between xi and xl for 1 ≤ i , l < 201.

d(xi, xl) =
√∥∥∥ξ̂ξξi1 ⊖ ξ̂ξξl1

∥∥∥2
S2 +

∥∥∥ξ̂ξξi2 ⊖ ξ̂ξξl2

∥∥∥2
S2 =

√∥∥∥∥L (
ξ̂ξξi1

)
− L

(
ξ̂ξξl1

)∥∥∥∥2

E
+

∥∥∥∥L (
ξ̂ξξi2

)
− L

(
ξ̂ξξl2

)∥∥∥∥2

E
.
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(a) (b)

Figure 2: Pre-smoothed compositional vector over time (a) and its reconstruction based on two leading eigen-
functions (b), for Republic of Korea.

(a) Cluster 1 (b) Cluster 2 (c) Cluster 3

Figure 3: Mean compositional vectors over time.

We employed hierarchical clustering based on complete linkage, which takes

d(C j,Ck) = max
x∈C j,y∈Ck

d(x, y).

as the distance between two clusters C j and Ck. Figure 3 depicts the average compositional vectors
over time for each cluster. The figure demonstrates the central features of the clusters. The cluster C1
consists of countries where population composition does not change much over time. The proportion
of the retired ages in the cluster is almost constant over time. Those countries in the clusters C2 and
C3 experienced some level of decrease in the proportion of the young ages since near 1970, but the
proportion in C2 increased until 1970 while in C3 they stayed constant until then. Also, both C2 and
C3 saw some level of increase in the proportion of the retired ages, but C3 started from a relatively
larger elderly proportion and underwent more rapid increase than C2.

We also compared our clustering result with the UN development groups obtained from the
WPP2019. We took the three groups from the WPP2019: countries in more developed regions, least
developed countries, and other less developed countries. More developed regions comprise Europe,
Northern America, Australia/New Zealand and Japan. Less developed regions comprise all regions of
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Table 1: Contingency table for the counts of countries

Least developed Other less developed More developed Total
Cluster 1 39 17 0 56
Cluster 2 7 80 2 89
Cluster 3 0 13 43 56

Total 46 110 45 201

Africa, Asia (except Japan), Latin America and the Caribbean plus Melanesia, Micronesia and Polyne-
sia. Countries in less developed regions are divided further into two groups, one is the group of 47 least
developed countries and the other consists of countries in less developed regions excluding the least
developed ones. The criterion for least developed countries can be found at http://unohrlls.org/about-
ldcs/criteria-for-ldcs/. Table 1 is a contingency table comparing the two clusterings. We find that the
clusters based on the compositional FPC are very close to the UN development groups.

5. Multivariate extension

In this section, we discuss a multivariate extension of the methodology presented in Section 2. Sup-
pose that we now have X = (X(1), . . . ,X(d))⊤ where each X( j) is a H-valued stochastic process with
E

∫ 1
0 ∥X

( j)(t)∥2H dt < ∞. Thus, X(t) for each t ∈ [0, 1] takes values in Hd. Without loss of generality
we also assume E X(t) = 0d for all t ∈ [0, 1], where 0d is the zero vector in Hd.

To accommodate the dependency between X( j) and X(k) for j , k, we consider the following d × d
matrix of covariance functions:

C(s, t) =
(
C jk(s, t)

)
, C jk(s, t) = E

(⟨
X( j)(s),X(k)(t)

⟩
H

)
.

Define the integral operator C ⊗ : LRd

2 → LRd

2 such that for f ∈ LRd

2

C ⊗(f)(s) =
∫ 1

0
C(s, t)f(t) dt, s ∈ [0, 1].

We endow LRd

2 with the metric ⟨f, g⟩LRd
2
=

∑d
j=1 ⟨ f j, g j⟩LR

2
. We may prove that for all f ∈ LRd

2

⟨
C ⊗(f), f⟩LRd

2
= E

∥∥∥∥∥∥∥∥
d⊕

j=1

∫ 1

0
f j(t) ⊙ X( j)(t) dt

∥∥∥∥∥∥∥∥
2

H

≥ 0.

Thus, the integral operator C ⊗ is nonnegative definite. Also, its kernel C is symmetric, i.e., C(s, t) =
C(t, s) for all s, t ∈ [0, 1]. Thus, due to Mercer’s Theorem,

C(s, t) =
∞∑
j=1

λ jϕϕϕ j(s)ϕϕϕ j(t)⊤,

where λ1 ≥ λ2 ≥ · · · ≥ 0 are the eigenvalues and {ϕϕϕ j}∞l=1 are the associated eigenfunctions of C ⊗ which
form a complete orthonormal system for the space LRd

2 .
Let ϕ jk denote the kth entry of ϕϕϕ j and {el}Ll=1 be an orthonormal basis of H. Consider the d-variate

real-valued random functions Zl(t) =
(⟨X(1)(t), el⟩H, . . . , ⟨X(d)(t), el⟩H

)⊤ for 1 ≤ l ≤ L. Then, we may
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write

Zl(t) =
∞∑
j=1

⟨Zl, ϕϕϕ j⟩LRd
2
· ϕϕϕ j(t)

=

∞∑
j=1

 d∑
k=1

⟨∫ 1

0
X(k)(s) ⊙ ϕ jk(s) ds, el

⟩
H

 · ϕϕϕ j(t). (5.1)

Write Zlk(t) = ⟨X(k)(t), el⟩H for the kth entry of Zl(t). Plugging the expression at (5.1) into the right
hand side of the equality X(k)(t) =

⊕L
l=1 Zlk(t) ⊙ el, we get the following Karhunen-Loève expansion

of X:

X(t) =
∞⊕
j=1

 d⊕
k=1

∫ 1

0
X(k)(s) ⊙ ϕ jk(s) ds

 ⊙ ϕϕϕ j(t).

The corresponding FPC scores in the above eigenanalysis are

ξξξ j =

d⊕
k=1

∫ 1

0
X(k)(s) ⊙ ϕ jk(s) ds, j ≥ 1.

The FPC scores reside in H, not in Hd, and the eigenfunctions ϕϕϕ j lie in LRd

2 . As in the case of d = 1 we
treated in Section 2, ξξξ j are uncorrelated in the sense that E

(
⟨ξξξ j, ξξξk⟩H

)
= 0 for j , k and E∥ξξξ j∥2H = λ j.

Here, we have used the fact that

∥ϕϕϕ j∥2LRd
2

=

d∑
l=1

∫ 1

0
ϕ jl(t)2 dt = 1, j ≥ 1,

⟨ϕϕϕ j, ϕϕϕk⟩2LRd
2

=

d∑
l=1

∫ 1

0
ϕ jl(t)ϕkl(t) dt = 0, j , k ≥ 1.

The following theorem is a multivariate version of Theorem 1. In the theorem, h ⊙ c for h ∈ H and
c = (c1, . . . , cd)⊤ ∈ Rd means (c1 ⊙ h, . . . , cd ⊙ h)⊤ ∈ Hd.

Theorem 3. Assume E
∫ 1

0 ∥X
( j)(t)∥2H dt < ∞ for all 1 ≤ j ≤ d. Then, it holds that X(t) =

⊕∞
j=1 ξξξ j ⊙

ϕϕϕ j(t) with probability one.

We may follow the procedure we described in Section 2.2 to estimate the eigenfunctions and the
FPC scores. Let Xi, 1 ≤ i ≤ n, be independent copies of X. Without loss of generality we assume that
n−1

⊕n
i=1 Xi(t) = 0. Then, we may estimate C(s, t) by

Ĉ(s, t) =
(
Ĉ jk(s, t)

)
, Ĉ jk(s, t) = n−1

n∑
i=1

⟨
X( j)

i (s), X(k)
i (t)

⟩
H
. (5.2)

This would give the eigendecomposition Ĉ(s, t) =
∑∞

j=1 λ̂ jϕ̂ϕϕ j(s)ϕ̂ϕϕ j(t). We take λ̂ j as the estimators of
λ j and ϕ̂ϕϕ j as the estimators of the ϕϕϕ j. We also estimate the FPC scores of Xi by

ξ̂ξξi j =

d⊕
k=1

∫ 1

0
X(k)

i (s) ⊙ ϕ̂ jk(s) ds, j ≥ 1, 1 ≤ i ≤ n.
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Then, as in the case of d = 1, we have

n−1
n∑

i=1

⟨
ξ̂ξξi j, ξ̂ξξik

⟩
H
= 0, j , k ≥ 1, n−1

n∑
i=1

∥∥∥ξ̂ξξi j

∥∥∥2
H = λ̂ j, j ≥ 1.

For these estimators of eigenfunctions and FPC scores, we may also obtain an analogue of Theorem 2.
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